跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳忠叡
研究生(外文):Chung-jui Wu
論文名稱:應用於植入式系統之無線能量與資料傳輸電路
論文名稱(外文):A Wireless Power and Data Transmission for Implantable Systems
指導教授:李順裕
指導教授(外文):Shuenn-Yuh Lee
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:相位移鍵調變穩壓器整流器E類放大器無線耦合
外文關鍵詞:regulatorrectifierwireless couplingclassEphase shift keying modulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本論文為設計ㄧ個應用於植入式神經肌肉刺激系統的傳送接收系統,其內容主要分為兩部分探討,第一部分為應用於植入式系統之外部發射端設計,第二部分為能量與資料回復電路。其中第一部分發射端包含以下兩個電路:1. 相位移鍵調變電路 2. E類放大器;而在第二部分能量與資料回復電路則包含整流器、電荷幫浦、低靜態電流穩壓器與相位移鍵解調變電路、時脈回復電路。
植入式系統內部所需的電源以及資料將利用無線耦合(RF coupling)方式傳輸至內部電路,經由線圈感應後所接收到的為交流載波訊號,透過全波整流後產生有微小漣波的直流訊號,再利用電壓穩壓器將訊號穩壓至所需之規格以提供後級電路之電源;而肌肉刺激所需之高電壓(5V)則由電荷幫浦提供。線圈感應所接收到的訊號裡同時也包含了電路所需的時脈及資料,透過解調變電路與時脈回復電路可將訊號中的資料及時脈萃取出來。
本論文晶片使用TSMC 0.35μm 2P4M CMOS製程實現,全部的電路面積為0.07mm2。由量測結果可知晶片上的低靜態電流線性穩壓器可以提供1V的穩定電壓源,而數位資料與8kHz的時脈也可以很準確地得到。
A transceiver system for implantable neuromuscular stimulator has been implemented in this thesis. This thesis has two parts including the design of outer transmitter for implantable system and the power and data recovery circuits. The transmitter includes two circuits: a PSK modulator and a Class-E amplifier. And the power and data recovery circuits contain a rectifier, a charge pump, a regulator, a PSK demodulator and a clock recovery circuit.
The necessary power and data in the implantable system receiving from the RF coupling and transmitting to the inside circuit are AC signals. By way of the rectifier and the voltage regulator, the DC signal can be obtained to provide supply voltage to the internal circuit and to be pumped to the high voltage(5V) for stimulation requirement. In addition, the received signals including clock and data information can be extracted by PSK demodulator and clock recovery circuit.
The overall circuits with core area of 0.07mm2 have been implemented in a TSMC 0.35μm 2P4M standard CMOS process technology. Measurement results show that the low power on-chip LDO regulator provides a stable 1-V DC supply voltage and the digital data as well as the 256kHz clock are obtained precisely.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
第1章 緒論 1
1.1節 研究動機 2
1.2節 研究目的及方法 6
1.3節 論文架構 7
第2章 無線必v與資料發射機 8
2.1節 無線必v與資料傳輸原理 8
2.2節 線圈的等效阻抗(Effective Series Resistance, ESR) 9
2.3節 植入端電路 11
2.4節 體外電路部分 13
2.5節 電路實現 16
第3章 能量回復電路 20
3.1節 CMOS全波整流器與降低漏電流機制 21
3.2節 提供高刺激電壓之電荷幫浦(Charge Pump) 23
3.3節 電壓穩壓器(Regulator) 25
3.4節 低弁荍C壓降線性穩壓器設計 33
3.4.1節 弱反轉區操作(Weak Inversion operation) 34
4.1 解調變電路 44
4.2節 相位移鍵調變電路(PSK modulator) 48
4.3節 相位移鍵解調變電路(PSK Demodulator) 48
4.4節 時脈回復電路 50
第5章 無線耦合資料與能量傳輸電路模擬與量測 52
5.1節 無線必v與資料發射機 53
5.2節 能量回復電路 55
5.2.1節 整流器 56
5.2.2節 電荷幫浦(Charge Pump) 57
5.2.3節 穩壓器(Regulator) 59
5.3節 資料與時脈回復電路 64
5.3.1節 相位移鍵解調變電路 64
5.3.2節 時脈回復電路 67
5.3.3節 除頻器 68
5.4節 無線耦合能量與資料傳輸模組整體量測 69
第6章 總結與未來方向 74
6.1節 結論 74
6.2節 未來方向 75
參考文獻 76
[1] Frost & Sullivan, Strategic Analysis of the World Cardiac Rhythm Management Markets. GlobalInformation, Inc, 2004.
[2] 工業技術研究院, http://www.itri.org.tw/chi/index.jsp
[3] American Heart Association, http://www.americanheart.org/presenter.jhtml?identifier=3002913
[4] 臺灣健康資訊網-老醫之家系列, http://www.tmn.idv.tw/chiaungo/index.html
[5] 台灣醫學會, http://formosan.mc.ntu.edu.tw/index.asp
[6] KingNet 國家網路醫院, http://hospital.kingnet.com.tw/books/index.html
[7] CHA Advances Reports, Cardiovascular Diagnostics: Key Developments in echnologies and Markets. Global Information, Inc, 2005.
[8] 科學人雜誌網站, http://www.sciam.com.tw/
[9] Medtronic, http://www.medtronic.com/
[10] St.Jude, http://www.sjm.com/
[11] L.S.Y. Wong, et. al, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp.2446–2456, Dec. 2004.
[12] L. S. Y. Wong et al., “A very low power CMOS mixed-signal IC for implantable pacemaker applications,” in Proc. IEEE Solid State Circuits Conf., Feb. 2004, pp.318–319.
[13] L. Lentola, et. al, “A 1-μA front end for pacemaker atrial sensing channels with early sensing capability,” IEEE Trans. Circuits Syst. II, vol. 50, no. 8, pp.397-403, Aug. 2003.
[14] J. G. Webster, “Medical Instrumentation Application and Design”, New York: Wiley, 1998.
[15] G. Wang, W. Liu, M. Sivaprakasam, and G. A. Kendir, “Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants,” IEEE Trans. Circuits Syst. I, vol. 52, no. 10, pp. 2109–2117, Oct. 2005.
[16] M. Ghovanloo and K. Najafi, “A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture,” IEEE Trans.Neural System and Rehabilitation Engineering, vol. 15, no. 3, pp. 449–457, Sep. 2007.
[17] C. R. Sullivan, “Optimal choice for number of strands in a Litz-wire transformer winding,” IEEE Trans. Power Electron., vol. 14, no. 2, pp. 283–291, Mar. 1999.
[18] F. W. Grover, Inductance Calculation Working Formulas and Tables. Research Triangle Park, NC: Instrument Society of America, 1973.
[19] F. E. Terman, Radio Engineers Handbook. New York: McGraw-Hill, 1943.
[20] A. Rahimi-Kian, A. Keyhani, and J. M. Powell, “Minimum loss designof a 100 kHz inductor with Litz wire,” in Proc. IEEE IAS Annual Meeting, vol. 2, Oct. 1997, pp. 1414–1420.
[21] “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields,3kHz to 300GHz”, IEEE C95.1-1991
[22] N. O. Sokal and A. D. Sokal, “Class-E—a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. SC-10, no. 6, pp. 168–176, Jun. 1975.
[23] M. K. Kazimierczuk and K. Puczko, “Exact analysis of class E tuned power amplifier at any Q and switch duty cycle,” IEEE Trans. Circuits Syst., vol. CAS-34, no. 2, Feb. 1987.
[24] A. Djemouai, M. A. Sawan, and M. Slamani, ”An efficient RF power transfer and bidirectional data transmission to implantable electronic devices,” in Proc. IEEE Int. Symp. Circuits and Systems, pp. 259 –262, May 1999.
[25] J. A. Von Arx, and K. Najafi, “A wireless single-chip telemetry-powered neural stimulation system,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1999, pp. 214-215.
[26] CRC Handbook of Biological Effects of Electromagnetic Fields, C. Polk and E. Postow, Eds., CRC, Boca Raton, FL, 1996, pp. 337–360.
[27] D. C. Galbraith, M. Soma, and R. L. White, “A wide-band efficient inductive transdermal power and data link with coupling insensitive gain,” IEEE Trans. Biomed. Eng., vol. BE-34, pp. 265–275, Apr. 1987.
[28] C.M. Zierhofer and E.S. Hochmair, “High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link,” IEEE Trans. Biomed. Eng., vol. 37, pp. 716-722, 1990.
[29] G. Wang, W. Liu, M. Sivaprakasam, M. S. Humayun, and J. D. Weiland, “Power Supply Topologies for Biphasic Stimulation inInductively Powered Implants,” in Proc. Int. Symp. Circuits Syst., May 2005, pp. 2743 – 2746,
[30] Jun Yi; Wing-Hung Ki; Chi-Ying Tsui, “Analysis and Design Strategy of UHF Micro-Power CMOS Rectifiers for Micro-Sensor and RFID Applications, ” Circuits and Systems I: Regular Papers, IEEE Transactions on Vol. 54, pp. 153-166, Jan. 2007
[31] Mandal, S.; Sarpeshkar, R. “Low-Power CMOS Rectifier Design for RFID Applications,” IEEE J. Circuits and Systems I, Vol. 54, pp. 1177 – 1188, June 2007
[32] M. Ghovanloo and K. Najafi, “Fully Integrated Wideband High-Current Rectifiers for Inductively Powered Devices,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1976–1984, Nov. 2004.
[33] J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol. SC-11, pp. 374–378, Mar. 1976.
[34] J. Shin, I. Chung, Y. J. Park, and H. S. Min, “A new charge pump without degradation in threshold voltage due to body effect,” IEEE J. Solid-State Circuits, vol. 35, pp. 1227–1230, Aug. 2000.
[35] Brian M. King, “Advantages of Using PMOS-Type Low-Dropout Linear Regulators in Battery Applications,” Analog Application Journal, Aug. 2000.
[36] Sunyoung Kim; Jae-Youl Lee; Seong-Jun Song; Namjun Cho; Hoi-Jun Yoo; “An energy-efficient analog front-end circuit for a sub-1-V digital hearingaid chip” IEEE J. of Solid-State Circuits, vol.41, pp. 876-882, April 2006.
[37] http://zh.wikipedia.org, 維基百科/MOSFET的結構
[38] Behzad Razavi, “Design of Analog CMOS Integrated Circuits” McGraw-Hill2003. pp.27, pp.100-102.
[39] Vittoz, E.; Fellrath, J.; “CMOS analog integrated circuits based on weak inversion operations” IEEE J. of Solid-State Circuits, vol.12, pp.224-231, Jun 1977.
[40] Phillip E. Allen; Douglas R. Holberg; “CMOS Analog Circuit Design” Oxford, 2002. pp.98.
[41] T. Delbrück and C. A. Mead, “Analog VLSI adaptive, logarithmic widedynamic-range photoreceptor,” in Proc. IEEE Int. Symp. Circuits andSystems, vol. 4, 1994, pp. 339–342.
[42] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, pp.958–965, June 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top