跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 23:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高立煒
研究生(外文):Li-wei Kao
論文名稱:結合視覺與紅外線感測之機器人自我定位及路徑規劃系統
論文名稱(外文):Localization and Path Planning for Mobile Robot Navigation Using Vision and Infrared Sensors
指導教授:林惠勇
指導教授(外文):Huei-Yung Lin
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:52
中文關鍵詞:移動機器人定位視覺路徑規劃
外文關鍵詞:mobile robotpath planninglocalizationvision
相關次數:
  • 被引用被引用:1
  • 點閱點閱:630
  • 評分評分:
  • 下載下載:165
  • 收藏至我的研究室書目清單書目收藏:2
本論文提出一個智慧型機器人自我定位與路徑規劃結合的方法,
我們使用了全方位視覺系統、紅外線感測器及進行感測環境標的物之特徵,
實現機器人自主定位與探勘的研究。由於全方位視覺具有廣大的環場視野,
智慧型機器人可藉此獲得周遭環境的大量特徵資訊,
並且透過此全方位視覺系統,偵測與擷取出環境標的物特徵資訊。
藉此機器人能在「自主探勘模式」結合紅外線感測器避開障礙物與自動探勘環境定位資訊,並將「自主探勘模式」所得定位資訊提供給「自主操作模式」,設計與規劃出最短安全路徑來到達使用者事先指定的地點。
In this thesis, we propose a self-localization and path-planning method for mobile robot navigation. An omnidirecional camera and infrared sensors are used to extract the landmark information of the environment. Due to the large field of view of the omnidirectional camera, the mobile robot can capture the rich information of the environment. The landmark features are detected and extracted from the omnidirectional video camera, so the robot is able to navigate in the environment automatically to learn the localization information and avoid obstacles by using infrared sensors. The robot system can then use the localization information to plan a shortest path to visit some particular locations pre-specified by the user.
摘要

Abstract

誌謝

圖目錄

表目錄

中英文字對照

1. 緒論
1.1 研究背景及動機
1.2 相關研究及應用
1.3 論文架構
2. 電腦視覺基礎理論與全方位視覺
2.1 全方位視覺系統
2.2 全方位攝影機的成像模型
2.3 全方位視覺系統流程
3. 定位及路徑建圖
3.1 初始與定位
3.1.1 標的物與機器人相對距離角度關係
3.1.2 自我機器人定位
3.2 自主環境探勘
3.2.1 視覺與紅外線結合避障關係
3.2.2 全域地圖與路徑定位關係
4. 路徑規劃
4.1 最短路徑規劃
4.2 路徑規劃系統流程
4.3 地點判定前進方向計算與行走方向決策
5. 實驗結果與分析
5.1 系統架構與實驗環境簡介
5.2 實驗結果
5.2.1 定位與路徑建圖
5.2.2 自主探勘模式
5.2.3 自主操作模式
5.3 實驗與問題討論
5.3.1 定位誤差討論
5.3.2 自主探勘模式討論
5.3.3 自主操作模式討論
6. 結論與未來展望

參考文獻
[1] Y. Shimosasa, J. Kanemoto, K. Hakamada, H. Horii, T. Ariki, Y. Sugawara, F. Kojio, A. Kimura, and S. Yuta, “Security service system using autonomous mobile robot,”IEEE Proceedings of the SMC ’99 Conference on Systems, Man, and Cybernetics, Vol. 4, pp.825-829, 1999.
[2] I. J. Cox, “Blanche-an experiment in guidance and navigation of an autonomous robot vehicle,” IEEE Transactions on Robotics and Automation, Vol. 7, pp. 193-204, 2003.
[3] P. Jensfelt and H. Christensen, “Laser based position acquisition and tracking in an indoor environment,” Proceedings of the IEEE International Symposium on Robotics and Automation, pp. 331-338, 1998.
[4] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge location system,”ACM Transactions on Information Systems, Vol. 10, No. 1, pp. 91-102, 1992.
[5] A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE Journal of Robotics and Automation, Vol. 3, pp. 249-265, 1987.
[6] G. Jang, S. Kim, J. Kim, and I. Kweon, “Metric localization using a single artificial
landmark for indoor mobile robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2857-2862, 2005.
[7] E. Kruse and F. M. Wahl, “Camera-based observation of obstacle motions to derive statistical data for mobile robot motion planning,” Proceedings IEEE International Conference on Robotics and Automation, pp. 662-667, 1998.
[8] A. Clerentin, L. Delahoche, and E. Brassart, “Cooperation between two omnidirectional perception systems for mobile robot localization,” Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1499-1504, 2000.
[9] R. Geraerts and M. Ovmnars, “A comparative study of probabilistic roadmap planners,”In Proceedings of Workshop on Algorithmic Foundations of Robotics, pp. 43-57, 2002.
[10] F. Lingelbach, “Path planning using probabilistic cell decomposition,” Proceedings IEEE International Conference on Robotics and Automation, pp. 467-472, 2004.
[11] Y. K. Hwang and N. Ahuja, “A potential field approach to path planning,” IEEE Transactions on Robotics and Automation, Vol. 8, NO. 1, pp. 23-32, 1992.
[12] L.E. Kavraki and P. Svestka, “Probabilistic roadmaps for path planning in highdimensional configuration spaces,” IEEE Transactions on Robotics and Automation, pp. 566-580, 1996.
[13] J. C. Latmobe, “Robot motion planning“, Kluwer Acdeemic Publishers, 1991.
[14] P. Vadakkepat, K. Tan, andW. Liang, “Evolutionary artificial potential fields and their application in real time robot path planning,” IEEE Evolutionary Computation, Vol. 1, pp. 256-263, 2000.
[15] E. Dijkstra, “A note on two problems in connection with graphs,” Numerical Mathematics, Vol. 1, pp. 269-271, 1959.
[16] L. Hong, P. Wenkai and Z. Hongbin, “Motion detection for multiple moving targets by using an omnidirectional camera,” Proceedings of IEEE International Conference on Robotics, Vol. 1, pp. 422-426, 2003.
[17] Y. Hoshi, M. Kato, “A walkthrough image generation for facility guidance by interpolating omnidirectional images,” Proceedings of IEEE International Conference on System,Man,and Cybernetics, pp. 1598-1602, 2006.
[18] http://www.sonybiz.net/
[19] http://www.accowle.com/english/index.html
[20] Y. Han and H. Hahn, “Localization and classification of target surfaces using two pairs of ultrasonic sensors,” Robotics and Autonomous Systems, Vol. 33, No. 1, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊