跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/22 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張丰慈
研究生(外文):Feng-Tz Chang
論文名稱:以部分傳輸序列為基礎之正交分頻多工系統中具低複雜度之IFFT實現架構
論文名稱(外文):Low Complexity IFFT Implementation Architecture for PTS-based OFDM System
指導教授:溫志宏溫志宏引用關係
指導教授(外文):Jyh-Horng Wen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:45
中文關鍵詞:PTS複雜度化簡正交分頻多工系統峰值對均值功率比
外文關鍵詞:PTSOFDMPAPR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要內容為簡化PTS OFDM架構下的計算複雜度。在PTS架構下的多組IFFT中有許多零的加法與乘法運算。在IFFT架構中化簡這些運算可以在不影響運算結果與PAPR的降低效果的情況下簡化PTS OFDM架構的計算複雜度。運用此原理,本篇論文的第三章與第四章由改變IFFT的運算架構提出兩個新的PTS架構。在第三章中,我們刪除IFFT架構中零的加法與成法運算後可將此IFFT化簡成一個較小的IFFT與另外兩個簡單的乘法運算。如此一來,我們可有效降低此PTS OFDM架構的複雜度。在第四章中,如同第三章的原理,我們將所有IFFT中零的加法與成法運算化簡,再將所有分支得到的運算架構合併為一個IFFT架構。如此一來,多個分支的IFFT即可以一個IFFT架構取代,且其複雜度將簡化為原本的1/M。
In this paper, the complexity reduction of partial transmit sequence (PTS) scheme which is used for PAPR reduction in OFDM system by reducing the complexity in the IFFT architecture is investigated. In the IFFT architecture of PTS OFDM scheme, much calculation is the addition and the multiplication of zero, which is obviously unnecessary. Eliminating the calculation from the architecture can efficiently reduce the computational complexity without any effect to the resulting signal or the performance of PAPR reduction. In this word, two new PTS OFDM scheme are proposed in chapter 3 and chapter 4. In chapter 3, after eliminating the addition and multiplication of zeros, the IFFT can be reduce to a smaller size of IFFT and two other transform. Thus, the computational complexity can be efficiently reduced. In chapter 4, with the similar concept, after eliminating the unnecessary calculation, we can combine all the IFFTs of branches into just an IFFT architecture by using decimate-in-frequency (DIF) IFFT architecture. Thus, the computational complexity can be reduce to 1/M times of the complexity, which M is the number of the branches.
Chapter 1 Introduction...………………………………………………………………2
Chapter 2 Overview of the PTS OFDM System ……………………………………...4
2.1 OFDM System and PTS ………………………………………………..4
2.2 A PTS OFDM Scheme with Low Complexity-Decomposition PTS Sub-block Partitioning Scheme ………………………………………...6
2.3 A PTS OFDM Scheme with Low Complexity-Fractional PTS
Technique……………………………………………………………….8
Chapter 3 A New PTS OFDM Scheme with Low Complexity IFFT Implement Architecture ……………………………………………………………….10
3.1 The Conventional PTS Scheme ……………………………………….10
3.2 The Complexity Reduction of Interleaving Partition PTS Scheme……11
3.3 The Complexity Reduction of Adjacent Partition PTS Scheme ………17
3.4 The Computational Complexity ………………………………………20
Chapter 4 Another New PTS OFDM Scheme with Low Complexity IFFT Implement Architecture ……………………………………………………………….25
4.1 The Key Point of This Idea …………………………………………...25
4.2 Reducing the Complexity of the Algorithm …………………………..26
4.3 Improvement And Future Work………………………………………..36
4.4 The Computational Complexity ………………………………………37
Chapter 5 Conclusion ………………………………………………………………..40
Reference …………………………………………………………………………….41
[1] S. Han and J. Lee, “An Overview of Peak-to-Average Power Ratio Reduction Techniques for Multicarrier Transmission,” IEEE Trans. Wireless Commun. vol. 12, no. 2, pp. 56-65, Apr. 2005.
[2] S. H. Muller and J. B. Huber, “A Novel Peak Power Reduction Scheme for OFDM,” Proc. IEEE Int. Symp. Personal, Indoor and Mobile Wireless Commun. (PIMRC), Sept. 1997, pp. 1090-1094.
[3] S. G. Kang and J. G. Kim, “A Novel Sub-block Partition Scheme for Partial Transmit Sequence OFDM,” IEEE Trans. Broadcast., vol. 45, no. 3, pp.333–338, Sept. 1999.
[4] T. Jiang, Y. Yang, and Y. Song, “Exponential Companding Transform for PAPR Reduction in OFDM Systems,” IEEE Trans. Broadcast., vol. 51, no. 2, pp. 244–248, Jun. 2005.
[5] M. Breiling, S. H. Muller, and J. B Huber, “SLM Peak Reduction Without Explicit Side Information, ” IEEE Commun. Lett., vol. 5, no. 6, pp.239-241, June 2001.
[6] D.-W. Lim, S.-J. Heo, J.-S. No, and H. Chung, “A New SLM OFDM Scheme with Low Complexity for PAPR Reduction,” IEEE Signal Processing Lett., vol. 12, no. 2, pp. 93–96, Feb. 2005.
[7] Stefan H. Muller, and Johannes B. Huber, “A Comparison of Peak Power Reduction Scheme for OFDM,” IEEE GLOBE-COM’97, Phoenix, 1997
[8] S. H. Müller, R. W. Bäuml, R. F. H. Fischer, and J. B. Huber, “OFDM with Reduced Peak-to-Average Power Ratio by Multiple Signal Representation,” In Annals of Telecommun., vol. 52, no. 1–2, pp. 58–67, Feb. 1997.
[9] M. Sharif, M. Gharavi-Alkhansari, and B. H. Khalaj, “On the Peak-to-Average power of OFDM Signals based on oversampling,” IEEE Trans. Commun., vol. 51, no. 1, pp. 72–78, Jan. 2003.
[10] S. H. Muller and J. B. Huber, “OFDM with Reduced Peak-to-Average Power Ratio by Optimum Combination of Partial Transmit Sequence,” IEEE Electronics Letters, vol. 33, no. 5, pp.368-369 Feb. 1997.
[11] W. S. Ho, A. Madhukumar, and F. Chin, “Peak-to-Average Power Reduction Using Partial Transmit sequences: a suboptimal approach based on dual layered phase sequencing,” IEEE Trans. Broadcast., vol. 49, no. 2, pp. 225–231, June 2003.
[12] O. J. Kwon and Y. H. Ha, “Multi-carrier PAP Reduction Method Using Sub-Optimal PTS with threshold,” IEEE Trans. Broadcast., vol. 49, no. 2, pp. 232–236, June 2003.
[13] D.W. Lim, S. J. Neo, J. S. No, and H. C. Chung, “A New PTS OFDM Scheme with Low Complexity for PAPR Reduction”, IEEE Trans. Broadcast., vol.52, no. 1, pp. 77-82, Mar. 2006.
[14] A. Ghassemi and T. A. Gulliver, “A Low-Complexity PTS-Based Radix FFT Method for PAPR Reduction in OFDM Systems”, IEEE Trans. Signal Processing., vol. 56, no. 3, Mar. 2008.
[15] A. Ghassemi and T. A. Gulliver, “PTS Peak Power Reduction of OFDM Signal with Low Complexity IFFTs”, Communication Networks and Services Reserch, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊