跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林正哲
研究生(外文):Cheng-Che Lin
論文名稱:摻雜稀土元素於氧化銦錫薄膜材料之光電特性研究
論文名稱(外文):Electrical and Optical Properties of Rare- Earth-Doped ITO Thin Films
指導教授:丁初稷
指導教授(外文):Chu-chi Ting
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:88
中文關鍵詞:薄膜氧化銦錫稀土元素
外文關鍵詞:ITORare EarthEuthin film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:862
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗採用溶膠凝膠法製備ITO導電薄膜作為太陽能電池的穿透
層。為了有效利用太陽光在300~400nm的近紫外線高能量區段,利用在
氧化銦錫薄膜中加入稀土元素及奈米螢光粉粒子兩種方法,希望可以
提高氧化銦錫薄膜的發光效率,又不影響其導電度、透光率,使太陽
能電池的吸收層得以有效吸收更大的波段,進而提升太陽能電池的光
電轉換效率。
本實驗以無水氯化銦及無水四氯化錫為純氧化銦錫薄膜的起始
物,Eu3+、Tb3+、Y3+及Y2O3: Eu3+為摻雜物,所配製的膠體溶液分別塗
佈於高溫玻璃及石英基板。
純氧化銦錫最低片電阻為48 ohm/sq,可見光穿透率為94.67 %;以2
mol % Y2O3-0.1 mol % Eu3+奈米粒子摻雜銦錫氧化物薄膜中可得到最
低片電阻為58 ohm/sq,增加電阻約18 %,可見光穿透率為94.3 %;以2
mol % Y3+-0.1 mol % Eu3+摻雜在氧化銦錫薄膜中可得到最低片電阻為
66 ohm/sq,增加電阻約45 %,可見光穿透率為94.67 %。
In this thesis, ITO films were prepared by sol-gel spin-coating method
as the transparent conducting layer of solar cell to utilize sunlight in the
near ultraviolet high-energy section of 300-400 nm effectively.
Investigations include two parts to improve the luminescent efficiency
of the indium tin oxide film: (i) Nanophosphor powders prepared by
co-precipitation method were added to the ITO films; (ii) The indium tin
oxide films were doped with rare-earth elements.
Two above-mentioned methods do not influence ITO conductivity and
light transmission, which make absorption layer of the solar cell absorb
greater wavelength regions effectively, and then improve the photoelectric
conversion efficiency.
ITO precursor solutions were prepared from indium chloride, tin
chloride and Eu3 +, Tb3 +, Y3 + and Eu3 + codoped, Eu3 +-doped Y2O3 powders
were used as dopants; the colloid solutions were spin-coated on the glass
and quartz substrates, respectively.
The composite films have the lowest sheet resistance 48 ohm/sq and the
transparency in visible region can reach 94.67 %.By mixing the indium tin
oxide film with Eu3+ (0.1 mol %)-doped Y2O3 (2 mol %) powder , sheet
resistance reaches minimum 58 ohm/sq (the resistance increases 18 %), and
the visible light transmittance approaches to 94.3 %.Y3+ (2 mol %)-Eu3+
(0.1 mol %) codoped indium tin oxide film possess minimum 66 ohm/sq
sheet resistance (the resistance increases 45 %), and the 94.67 % visible
light transmittance.
摘要 III
英文摘要 IV
誌謝 V
總目錄 VI

第一章 序論 1
第二章 文獻與理論基礎 3
2-1 透明導電膜簡介與文獻 3
2-1-1 透明導電膜的種類 4
2-1-2 透明導電膜的製備方法 4
2-1-3 溶膠-凝膠法 5
2-2奈米螢光材料簡介與發展 9
2-2-1 螢光材料之簡介與發展 9
2-2-2 發光中心之種類與原理 11
2-2-3 螢光材料的設計 13
2-2-4 影響螢光效率的因素 16
2-2-5 奈米稀土發光材料簡介與特性 19
2-3 ITO的結構與導電機制 26
2-4 Y2O3結構與稀土摻雜發光機制 29

第三章 實驗方法 42
3-1藥品 42
3-2儀器 44
3-3溶膠-凝膠法製備ITO薄膜 46
3-3-1 溶膠-凝膠法製備純ITO及稀土摻雜之ITO薄膜 47
3-3-2 溶膠-凝膠法製備ITO:Y3+:Eu3+薄膜 48
3-3-3 溶膠-凝膠法製備ITO摻雜Y2O3-Eu3+/SiO2粒子薄膜
49
3-4量測方法 50
3-4-1 X光繞射分析儀(X-ray Diffraction) 50
3-4-2 掃描式電子顯微鏡(SEM) 51
3-4-3 光致發光 (PL) 51
3-4-3-1 光激螢光原理 52
3-4-4 四點探針 54

第四章 實驗結果與討論 65
4-1 X光繞射分析 65
4-2掃描式電子顯微鏡量測 65
4-3光致發光 (PL)量測 66
4-4穿透光譜 66
4-5四點探針量測 68
4-6結論 70
4-7未來與展望 71

參考文獻 83
1K. L. Chopra, S. Major, and D. K. Pandya, "Transparent Conductors," Thin Solid Films 102 (1), 1-46 (1983).

2T. Maruyama and K. Fukui, "Indium tin oxide thin films prepared by chemical vapor deposition," Journal of Applied Physics 70, 3848 (1991).

3T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology 20 (4), S35-S44 (2005).

4G. L. Messing, S. C. Zhang, and G. V. Jayanthi, "Ceramic Powder Synthesis by Spray Pyrolysis," Journal of the American Ceramic Society 76 (11), 2707-2726 (1993).

5L. E. Scrivin, "Physics and applications of dip-coating and spin coating," Brinker CJ, Clark DE, Uhlrich D R. Better Ceramics Through Chemistry Ⅲ. Pittsburgh, PA: Matericals Research Society, 717-729 (1988).

6P. K. Biswas, A. De, K. Ortner et al., "Study of sol–gel-derived high tin content indium tin oxide (ITO) films on silica-coated soda lime silica glass," Materials Letters 58 (10), 1540-1545 (2004).

7D. Yu, W. Yu, D. Wang et al., "Structural, optical, and electrical properties of indium tin oxide films with corundum structure fabricated by a sol–gel route based on solvothermal reactions," Thin Solid Films 419 (1-2), 166-172 (2002).

8H. L. Ma, D. H. Zhang, P. Ma et al., "Preparation and properties of transparent conducting indium tin oxide films deposited by reactive evaporation," Thin Solid Films 263 (1), 105-110 (1995).

9K. Zhang, F. Zhu, C. H. A. Huan et al., "Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature," Thin Solid Films 376 (1-2), 255-263 (2000).

10Y. Suzuki, F. Niino, and K. Katoh, "Low-resistivity ITO films by dc arc discharge ion plating for high duty LCDs," Journal of non-crystalline solids 218, 30-34 (1997).
11K. Terabe, K. Kato, H. Miyazaki et al., "Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide," Journal of Materials Science 29 (6), 1617-1622 (1994).

12L. L. Hench and J. K. West, "The sol-gel process," Chemical Reviews 90 (1), 33-72 (1990).

13K. Nakanishi and N. Soga, "Phase separation in silica sol-gel system containing polyacrylic acid. I: Gel formation behavior and effect of solvent composition," Journal of non-crystalline solids 139 (1), 1-13 (1992).

14T. Lopez, R. Gomez, G. Pecci et al., "Effect of pH on the incorporation of platinum into the lattice of sol–gel titania phases," Materials Letters 40 (2), 59-65 (1999).

15W. Jin and J. D. Brennan, "Properties and applications of proteins encapsulated within sol–gel derived materials," Analytica Chimica Acta 461 (1), 1-36 (2002).

16M. Kakihana, "Invited review “sol-gel” preparation of high temperature superconducting oxides," Journal of Sol-Gel Science and Technology 6 (1), 7-55 (1996).

17C. J. Brinker and A. J. Hurd, "Fundamentals of sol-gel dip-coating," J. Phys. III France 4, 1231-1242 (1994).

18J. Zhang, K. H. Au, Z. Q. Zhu et al., "Sol–gel preparation of poly (ethylene glycol) doped indium tin oxide thin films for sensing applications," Optical Materials 26 (1), 47-55 (2004).

19S. M. Rozati and T. Ganj, "Transparent conductive Sn-doped indium oxide thin films deposited by spray pyrolysis technique," Renewable Energy 29 (10), 1671-1676 (2004).

20K. Daoudi, B. Canut, M. G. Blanchin et al., "Tin-doped indium oxide thin films deposited by sol–gel dip-coating technique," Materials Science & Engineering C 21 (1-2), 313-317 (2002).

21L. E. Scriven, "Physics and Applications of Dip Coating and Spin Coating, Mat. Res. Soc. Symp," Proc 121, 717–729 (1988).

22A. Cho, S. Y. Kim, M. Lee et al., "Fast luminescence decay processes of photoexcited Eu3+ in CaS: Eu, La," Journal of Luminescence 91 (3-4), 215-221 (2000).

23I. Rammo, M. Kerikmyae, M. Lepist et al., "Impurity absorption of SrS-Ce3+ phosphors," (1997).

24W. Chen, G. Li, J. O. Malm et al., "Pressure dependence of Mn2+ fluorescence in ZnS: Mn2+ nanoparticles," Journal of Luminescence 91 (3-4), 139-145 (2000).

25H. Yamamoto and T. Matsuzawa, "Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+," Journal of Luminescence 72, 287-289 (1997).

26W. T. Hsu, W. H. Wu, and C. H. Lu, "Synthesis and luminescent properties of nano-sized Y3Al5O12: Eu3+ phosphors," Materials Science & Engineering B 104 (1-2), 40-44 (2003).

27F. Yang, M. Wilkinson, E. J. Austin et al., "Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors," Physical Review Letters 70 (3), 323-326 (1993).

28M. G. Kwak, J. H. Park, and S. H. Shon, "Synthesis and properties of luminescent Y2O3: Eu (15–25wt%) nanocrystals," Solid State Communications 130 (3-4), 199-201 (2004).

29W. W. Zhang, W. P. Zhang, P. B. Xie et al., "Optical properties of nanocrystalline Y2O3: Eu depending on its odd structure," Journal of Colloid And Interface Science 262 (2), 588-593 (2003).

30L. Yang, H. Song, L. Yu et al., "Unusual power-dependent and time-dependent upconversion luminescence in nanocrystals Y2O3: Ho3+/Yb3+," Journal of Luminescence 116 (1-2), 101-106 (2006).

31H. Song and J. W. Wang, "Dependence of photoluminescent properties of cubic Y2O3: Tb3+ nanocrystals on particle size and temperature," Journal of Luminescence 118 (2), 220-226 (2006).

32N. Toshima and T. Yonezawa, "Bimetallic nanoparticles—novel materials for chemical and physical applications," New Journal of Chemistry 22 (11), 1179-1201 (1998).

33G. Billen, P. Servais, and S. Becquevort, "Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control?," Hydrobiologia 207 (1), 37-42 (1990).

34A. R. Bausch and K. Kroy, "A bottom-up approach to cell mechanics," Nature Physics 2 (4), 231-238 (2006).

35P. K. Sharma, M. H. Jilavi, R. Nass et al., "Tailoring the particle size from μm→ nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria," Journal of Luminescence 82 (3), 187-193 (1999).

36Q. Li, L. Gao, and D. Yan, "Effects of grain size on wavelength of y2O3: Eu 3+ emission spectra," Nanostructured materials 8 (7), 825-831 (1997).

37A. Konrad, T. Fries, A. Gahn et al., "Chemical vapor synthesis and luminescence properties of nanocrystalline cubic YO: Eu," Journal of Applied Physics 86, 3129 (1999).

38B. M. Tissue, "Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts," Chem. Mater 10 (10), 2837-2845 (1998).

39C. He, Y. Guan, L. Yao et al., "Synthesis and photoluminescence of nano-Y2O3: Eu3+ phosphors," Materials Research Bulletin 38 (6), 973-979 (2003).

40Y. L. Soo, S. W. Huang, Z. H. Ming et al., "X-ray excited luminescence and local structures in Tb-doped YO nanocrystals," Journal of Applied Physics 83, 5404 (1998).

41E. T. Goldburt, B. Kulkarni, R. N. Bhargava et al., "Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor," Journal of Luminescence 72, 190-192 (1997).

42D. K. Williams, B. Bihari, and B. M. Tissue, "Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+: Y2O3 and comparison to Eu3+: Y2O3 nanocrystals," J. Phys. Chem. B 102 (6), 916-920 (1998).

43D. K. Williams, H. Yuan, and B. M. Tissue, "Size dependence of the luminescence spectra and dynamics of Eu3+: Y2O3 nanocrystals," Journal of Luminescence 83, 297-300 (1999).

44A. Beaurain, D. Luxembourg, C. Dufour et al., "Effects of annealing temperature and heat-treatment duration on electrical properties of sol–gel derived indium-tin-oxide thin films," Thin solid films 516 (12), 4102-4106 (2008).

45M. J. Alam and D. C. Cameron, "Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol–gel process," Surface & Coatings Technology 142, 776-780 (2001).

46A. Hultaker, J. Lu, E. Olsson et al., "Transparent Conductive Tin Doped Indium Oxide Thin Films With Silver Additive," Transport and Microstructural Phenomena in Oxide Electronics: Symposium Held April 16-20, 2001, San Francisco, California, USA (2001).

47T. Minami, T. Yamamoto, Y. Toda et al., "Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering," Thin solid films 373 (1-2), 189-194 (2000).

48S. Z. Karazhanov, P. Ravindran, P. Vajeeston et al., "Phase stability, electronic structure, and optical properties of indium oxide polytypes," Physical Review B 76 (7), 75129 (2007).

49G. B. Gonzalez, J. B. Cohen, J. H. Hwang et al., "Neutron diffraction study on the defect structure of indium–tin–oxide," Journal of Applied Physics 89, 2550 (2001).

50Z. Li and D. Ren, "Fabrication and structure characterization of ITO transparent conducting film by sol-gel technique," Transactions of Nonferrous Metals Society of China 17 (3), 665-668 (2007).

51M. H. Cho, D. H. Ko, Y. K. Choi et al., "Structural characteristics of YO films grown on oxidized Si (111) surface," Journal of Applied Physics 89, 1647 (2001).

52T. Mori, J. H. Lee, J. Li et al., "Improvement of the electrolytic properties of Y2O3-based materials using a crystallographic index," Solid State Ionics 138 (3-4), 277-291 (2001).

53A. Kasikov, "Optical inhomogeneity model for evaporated Y2O3 obtained from physical thickness measurement," Applied Surface Science 254 (12), 3677-3680 (2008).

54L. Robindro Singh, R. S. Ningthoujam, V. Sudarsan et al., "Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core–shell formation effects," Nanotechnology 19, 055201 (2008).

55B. M. Tissue and H. B. Yuan, "Structure, particle size, and annealing of gas phase-condensed Eu3+: Y2O3 nanophosphors," Journal of Solid State Chemistry 171 (1-2), 12-18 (2003).

56S. J. Hong and J. I. Han, "Characterization of Indium Tin Oxide (ITO) Thin Film Fabricated by Indium-Tin-Organic Sol Including ITO Nanoparticle," Diffusion and defect data. Solid state data. Part B, Solid state phenomena 121, 877-884 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊