跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡嘉豪
研究生(外文):Chia-Hao Tsai
論文名稱:微量共摻雜釔-銪離子於氧化銦錫之結構與光電特性研究
論文名稱(外文):Structural and Opto-Electronic characterizations of ITO lightly codoped with yttrium and europium ions
指導教授:丁初稷
指導教授(外文):Chu-Chi Ting
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:94
中文關鍵詞:氧化銦錫共摻雜
外文關鍵詞:ITOcodopedEuropiumYttrium.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:881
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本實驗採用溶膠凝膠法製備ITO導電薄膜配製旋轉塗佈於高溫玻璃上作為太陽能電池的穿透層。為了有效利用太陽光在300~400nm的近紫外線高能量區段,我們使用氧化銦鍚作為母材摻雜發光元素銪,分別製作成粉末及導電薄膜兩種方法,實驗發現母材氧化銦鍚單摻雜銪(Europium)離子的發光特性不好,幾乎偵測不到銪離子之放射光,由此可知,氧化銦鍚對銪不是個好的母材,故我們試著藉由稀土元素釔(Yttrium)做共摻雜動作後,發現其發光特性大大的提升,且粉末及薄膜皆可明顯偵測到611 nm之放射光。
最後,經由元素摻雜量的控制,我們得一電阻率(3.11×10-3 Ω.cm)與未摻雜之氧化銦錫(2.91×10-3 Ω.cm)相近,其穿透率在可見光部分也可達到94%,但具下轉換功能的高品質透明導電薄膜,除了以上光電特性外,其中還對此材料做XRD及SEM對結晶性做分析,加上XPS分析參雜前後材料內部的化學變化。若再經由製程參數的改良,此薄膜可用於薄膜式太陽能電池之透明導電層,增加其轉換效率。
In this thesis, ITO films were prepared by sol-gel spin-coating method as the transparent conducting layer of solar cell. In order to utilize sunlight in 300-400 nm ultraviolet high-energy section effectively, we used Eu3+ ions doped ITO to fabricate the thin films and the powder. it has no 611 nm emission were Investigated from Eu3+ ions at the PL measure, and we tried to codoped Eu3+-Y3+ into ITO, as a result, the emission of 611 nm was magnificently increased.
Finally, we could obtain a quality thin films that the transmittance able to reach 94% , and the resistivity similar to pure ITO thin film, however, it has provided with down-conversion effect to increase the efficiency of solar cell. In addition to the Opto-Electronic characteristic measure , the ITO surface morphology and grain size were observed by the X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) , and X-ray photoelectron spectra (XPS) was analysised the chemical environment of the materials.
After the suitable process parameters control, the thin films could be as the luminescent solar concentrators and transparent conductive electrode to enhance the efficiency of solar cells.
摘要 II
英文摘要 III
誌謝 IV
目錄 V
第一章 序論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻與理論基礎 5
2-1 透明導電膜簡介與文獻 5
2-1-1 透明導電膜的種類 6
2-1-2 透明導電薄膜的製備方法 6
2-1-3 溶膠-凝膠法 7
2-1-4 Sol–Gel 法的優點 9
2-2 ITO的結構與導電機制 11
2-2-1 結構 12
2-2-2 導電機制 13
2-3 螢光材料簡介與發展 14
2-3-1 螢光材料之簡介與發展 14
2-3-2 發光中心之種類與原理 16
2-3-3 螢光材料的設計 18
2-3-4 斯托克斯效應 21
2-3-5 影響螢光效率的因素 21
2-4 稀土離子Eu3+摻雜發光機制 24
2-5 luminescent solar concentrator; LSC 技術簡介 25
第三章 實驗方法 34
3-1 實驗藥品 34
3-2 實驗儀器 35
3-3 溶膠-凝膠法製備ITO/ITO:Y3+:Eu3+薄膜 36
3-3-1 高溫玻璃基板之前處理及塗佈參數 36
3-3-2 溶膠-凝膠法製備純ITO薄膜 37
3-3-3 溶膠-凝膠法製備ITO:Y3+:Eu3+薄膜 37
3-4 溶膠-凝膠法製備ITO/ITO:Y3+:Eu3+薄膜 38
3-4-1 溶膠-凝膠法製備純ITO粉末 38
3-4-2 溶膠-凝膠法製備ITO:Y3+:Eu3+粉末 39
3-5量測方法 40
3-5-1 X光繞射分析儀(X-ray Diffraction) 40
3-5-2 掃描式電子顯微鏡(SEM) 41
3-5-3 X光電子能譜儀(XPS) 41
3-5-4 光激螢光光譜原理 (PL) 42
3-5-5 光激螢光激發光譜原理 (PLE) 42
3-5-6 四點探針 (Four point probe) 43
3-5-7 穿透光譜儀 (T%) 45
第四章 實驗結果與討論 54
4-1 X光繞射分析 54
4-2掃描式電子顯微鏡量測 55
4-3 X光電子能譜儀分析 56
4-4光激螢光光譜量測 57
4-5光激螢光激發光譜量測 60
4-6穿透光譜量測 60
4-7四點探針量測 61
第五章 結論 86
參考文獻 88
[1]H. J. Möller, Semiconductor for solar Cells, Artech House Press, Boston, p.10 (1993).
[2]Harish C.Barshilia , N.Selvakumar et al., "Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayerabsorbercoatings," Solar Energy Materials & Solar Cells 93, 315–323 (2009).
[3]B. S. Richards, "Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers," Solar Energy Materials & Solar Cells 90, 2329-2337 (2006).
[4]K. L. Chopra, S. Major, and D. K. Pandya, "Transparent Conductors," Thin Solid Films 102 (1), 1-46 (1983).
[5]T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology 20 (4), S35-S44 (2005).
[6]K.L. Chopra, S.Major and D. K. Pandya, Thin solid Films 102, 1~46(1983)
[7]G. L. Messing, S. C. Zhang, and G. V. Jayanthi, "Ceramic Powder Synthesis by Spray Pyrolysis," Journal of the American Ceramic Society 76 (11), 2707-2726 (1993).
[8]L. E. Scrivin, "Physics and applications of dip-coating and spin coating," Brinker CJ, Clark DE, Uhlrich D R. Better Ceramics Through Chemistry Ⅲ. Pittsburgh, PA: Matericals Research Society, 717-729 (1988).
[9]P. K. Biswas, A. De, K. Ortner et al., "Study of sol–gel-derived high tin content indium tin oxide (ITO) films on silica-coated soda lime silica glass," Materials Letters 58 (10), 1540-1545 (2004).
[10]T. Maruyama and K. Fukui, "Indium tin oxide thin films prepared by chemical vapor deposition," Journal of Applied Physics 70, 3848 (1991).
[11]D. Yu, W. Yu, D. Wang et al., "Structural, optical, and electrical properties of indium tin oxide films with corundum structure fabricated by a sol–gel route based on solvothermal reactions," Thin Solid Films 419 (1-2), 166-172 (2002).
[12]H. L. Ma, D. H. Zhang, P. Ma et al., "Preparation and properties of transparent conducting indium tin oxide films deposited by reactive evaporation," Thin Solid Films 263 (1), 105-110 (1995).
[13]K. Zhang, F. Zhu, C. H. A. Huan et al., "Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature," Thin Solid Films 376 (1-2), 255-263 (2000).
[14]Y. Suzuki, F. Niino, and K. Katoh, "Low-resistivity ITO films by dc arc discharge ion plating for high duty LCDs," Journal of non-crystalline solids 218, 30-34 (1997).
[15]K. Terabe, K. Kato, H. Miyazaki et al., "Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide," Journal of Materials Science 29 (6), 1617-1622 (1994).
[16]L. L. Hench and J. K. West, "The sol-gel process," Chemical Reviews 90 (1), 33-72 (1990).
[17]K. Nakanishi and N. Soga, "Phase separation in silica sol-gel system containing polyacrylic acid. I: Gel formation behavior and effect of solvent composition," Journal of non-crystalline solids 139 (1), 1-13 (1992).
[18]T. Lopez, R. Gomez, G. Pecci et al., "Effect of pH on the incorporation of platinum into the lattice of sol–gel titania phases," Materials Letters 40 (2), 59-65 (1999).
[19]W. Jin and J. D. Brennan, "Properties and applications of proteins encapsulated within sol–gel derived materials," Analytica Chimica Acta 461 (1), 1-36 (2002).
[20]M. Kakihana, "Invited review sol-gel preparation of high temperature superconducting oxides," Journal of Sol-Gel Science and Technology 6 (1), 7-55 (1996).
[21]C. J. Brinker and A. J. Hurd, "Fundamentals of sol-gel dip-coating," J. Phys. III France 4, 1231-1242 (1994).
[22]J. Zhang, K. H. Au, Z. Q. Zhu et al., "Sol–gel preparation of poly (ethylene glycol) doped indium tin oxide thin films for sensing applications," Optical Materials 26 (1), 47-55 (2004).
[23]S. M. Rozati and T. Ganj, "Transparent conductive Sn-doped indium oxide thin films deposited by spray pyrolysis technique," Renewable Energy 29 (10), 1671-1676 (2004).
[24]K. Daoudi, B. Canut, M. G. Blanchin et al., "Tin-doped indium oxide thin films deposited by sol–gel dip-coating technique," Materials Science & Engineering C 21 (1-2), 313-317 (2002).
[25]L. E. Scriven, "Physics and Applications of Dip Coating and Spin Coating, Mat. Res. Soc. Symp," Proc 121, 717–729 (1988).
[26]A. Beaurain, D. Luxembourg, C. Dufour et al., "Effects of annealing temperature and heat-treatment duration on electrical properties of sol–gel derived indium-tin-oxide thin films," Thin solid films 516 (12), 4102-4106 (2008).
[27]M. J. Alam and D. C. Cameron, "Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol–gel process," Surface & Coatings Technology 142, 776-780 (2001).
[28]M. J. Alam and D. C. Cameron, "Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process"Thin Solid Films 00, 455-459 (2000)
[29]A. Hultaker, J. Lu, E. Olsson et al., "Transparent Conductive Tin Doped Indium Oxide Thin Films With Silver Additive," Transport and Microstructural Phenomena in Oxide Electronics: Symposium Held April 16-20, 2001, San Francisco, California, USA (2001).
[30]T. Minami, T. Yamamoto, Y. Toda et al., "Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering," Thin solid films 373 (1-2), 189-194 (2000).
[31]S. Z. Karazhanov, P. Ravindran, P. Vajeeston et al., "Phase stability, electronic structure, and optical properties of indium oxide polytypes," Physical Review B 76 (7), 75129 (2007).
[32]G. B. Gonzalez, J. B. Cohen, J. H. Hwang et al., "Neutron diffraction study on the defect structure of indium–tin–oxide," Journal of Applied Physics 89, 2550 (2001).
[33]Z. Li and D. Ren, "Fabrication and structure characterization of ITO transparent conducting film by sol-gel technique," Transactions of Nonferrous Metals Society of China 17 (3), 665-668 (2007).
[34]A. Cho, S. Y. Kim, M. Lee et al., "Fast luminescence decay processes of photoexcited Eu3+ in CaS: Eu, La," Journal of Luminescence 91 (3-4), 215-221 (2000).
[35]I. Rammo, M. Kerikmyae, M. Lepist et al., "Impurity absorption of SrS-Ce3+ phosphors," (1997).
[36]W. Chen, G. Li, J. O. Malm et al., "Pressure dependence of Mn2+ fluorescence in ZnS: Mn2+ nanoparticles," Journal of Luminescence 91 (3-4), 139-145 (2000).
[37]H. Yamamoto and T. Matsuzawa, "Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+," Journal of Luminescence 72, 287-289 (1997).
[38]W. T. Hsu, W. H. Wu, and C. H. Lu, "Synthesis and luminescent properties of nano-sized Y3Al5O12: Eu3+ phosphors," Materials Science & Engineering B 104 (1-2), 40-44 (2003).
[39]F. Yang, M. Wilkinson, E. J. Austin et al., "Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors," Physical Review Letters 70 (3), 323-326 (1993).
[40]M. G. Kwak, J. H. Park, and S. H. Shon, "Synthesis and properties of luminescent Y2O3: Eu (15–25wt%) nanocrystals," Solid State Communications 130 (3-4), 199-201 (2004).
[41]W. W. Zhang, W. P. Zhang, P. B. Xie et al., "Optical properties of nanocrystalline Y2O3: Eu depending on its odd structure," Journal of Colloid And Interface Science 262 (2), 588-593 (2003).
[42]L. Yang, H. Song, L. Yu et al., "Unusual power-dependent and time-dependent upconversion luminescence in nanocrystals Y2O3: Ho3+/Yb3+," Journal of Luminescence 116 (1-2), 101-106 (2006).
[43]H. Song and J. W. Wang, "Dependence of photoluminescent properties of cubic Y2O3: Tb3+ nanocrystals on particle size and temperature," Journal of Luminescence 118 (2), 220-226 (2006).
[44]B. M. Tissue, "Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts," Chemisitry Of Materials 10 (10) 2837-2845 (1998).
[45]D. K. Williams B. Bihari, and B. M. Tissue "Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+: Y2O3 and comparison to Eu3+: Y2O3 nanocrystals," Journal of Physical Chemisitry B 102 (6), 916-920 (1998).
[46]L. R. Singh, R. S. Ningthoujam, V. Sudarsan et al., "Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core–shell formation effects," Nanotechnology 19, 055201 (2008).
[47]B. M. Tissue and H. B. Yuan, "Structure, particle size, and annealing of gas phase-condensed Eu3+: Y2O3 nanophosphors," Journal of Solid State Chemistry 171 (1-2), 12-18 (2003).
[48]Sri Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, "Sensitized Emission from Lanthanide-Doped Nanoparticles Embedded in a Semiconductor Sol-Gel Thin Film, " ChemPhysChem 8, 1677-1683 (2007).
[49]W.G.J.H.M. van Sarka, A. Meijerinkb, R.E.I. Schroppc et al., "Enhancing solar cell efficiency by using spectral converters," Solar Energy Materials & Solar Cells 87, 395-409 (2005).
[50]S.J. Gallagher, B. Norton, and P.C. Eames, "Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices," Solar Energy 81, 813–821 (2007).
[51]A. Schuler, M. Python, M. Valle del Olmo et al., "Quantum dot containing nanocomposite thin films for photoluminescent solar concentrators," Solar Energy 81, 1159–1165 (2007).
[52]R. R. King, D. C. Law, K. M. Edmondson et al., "40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells," Applied Physisc Letters 90, 183516 (2007).
[53]Do Hyung Park, Yang Hwi Cho, Young Rag Do et al., "Characterization of Eu-Doped SnO2 Thin Films Deposited by Radio -Frequency Sputtering for a Transparent Conductive Phosphor Layer," Journal of The Electrochemical Society 153 (4), H63-H67 (2006).
[54]S.R. Stock and B. D, Cullity, "Elements of X-Ray Diffraction, Prentice Hall," p170 (2001).
[55]K. Schroder, "Semiconductor Material and Device Characterization," Wiley- Interscience, New York (2006).
[56]K. Y. Kim and S. B. Park , "Preparation and property control of nano-sized indium tin oxide particle," Materials Chemistry and Physics 86, 210-221 (2004).
[57]F. M. Smits, "Measurement of Sheet Resistivities with the Four-Point Probe," The Bell System Technical . Journal 37, 711 (1958).
[58]JCPDS card: No.06-0416 (In2O3).
[59]S. Fujihara and K. Tokumo, "Multiband Orange-Red Luminescence of Eu3+ Ions Based on the Pyrochlore-Structured Host Crystal," Chemistry of Materials 17, 5587-5593 (2005).
[60]S. S. Kima, S.Y. Choia, C.G. Park et al., "Transparent conductive ITO thin films through the sol-gel process using metal salts," Thin Solid Films 347, 155-160 (1999).
[61]G. Gaggiotti, A. Galdikas, S. Kaciulis et al., "Surface chemistry of tin oxide based gas sensors," Journal of Applied Physics 76, 4467 (1994).
[62]X. Fu, H. Zhang, S. Niua, and Q. Xin, "Synthesis and luminescent properties of SnO2:Eu nanopowder via polyacrylamide gel method," Journal of Solid State Chemistry 178, 603-607 (2005).
[63]D.P. Dutta, V. Sudarsan, P. Srinivasu et al., "Indium Oxide and /Dysprosium Doped Indium Oxide Nanoparticles: Sonochemical Synthesis, Characterization, and Photoluminescence Studies," Journal of Physical Chemistry C 112, 6781-6785 (2008).
[64]M. ogami and T. Enomoto, T. Hayakawa, "Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass," Journal of Luminescence 97 147-152 (2002).
[65]A. Ambrosini, A. Duarte, and K. R. Poeppelmeier, "Electrical, Optical, and Structural Properties of Tin-Doped In2O3-M2O3 Solid Solutions (M=Y, Sc), "Journal of Solid State Chemistry 153, 41-47 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊