跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李長紘
研究生(外文):Chang-Hung Li
論文名稱:低溫溶液法製成高緻密氧化鋅奈米柱薄膜之物理特性研究
論文名稱(外文):Compact and vertically-aligned ZnO nanorods thin filmsby the low-temperature solution method
指導教授:丁初稷
指導教授(外文):Chu-Chi Ting
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:奈米柱氧化鋅化學溶液法溶膠-凝膠法接力長晶法薄膜
外文關鍵詞:thin filmNanorodsol-gelchemical bath depositionZnO
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1002
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用二階段性的實驗成長高氧化鋅奈米柱薄膜。先在基板預先鍍上晶種層,再利用化學溶液成長氧化鋅奈米柱,並突破以往文獻的成長氧化鋅奈米柱製程方法,將一次成長改良為接力成長的方法,我們稱之為接力長晶法,並透過SEM、XRD、穿透光譜等測量可知此新方法能夠成長出高緻密性的氧化鋅奈米柱薄膜結構。在成長溶液濃度0.05 M、成長溫度75°C、成長時間為360分鐘、經種層的晶粒大小為20 nm的條件下,其奈米柱薄膜厚度約為780 nm,堆積密度(packing density, P)可高達0.84,且可見光平均穿透率也超過85 %。此實驗控制在低溫成長,且原理簡單,製作過程並不複雜,無須高單價儀器輔助即可完成高品質光學特性的薄膜。
In this thesis, ZnO nanorods were fabricated by two-step process. In the first instance, the substrate was pre-coated seed layer by sol-gel spin-coating method before growing nanorods . Secondly, ZnO nanorods were synthesized by Chemical bath deposition (CBD). We improved the method by replacing the solution several times in relays, called multiable-step growth, without grown in once as the article reported in usual. Highly c-axis-oriented ZnO nanorods thin films were obtained on substrates by SEM, XRD and transmittance spectra. The most compact and vertically-aligned ZnO nanorods thin film with the thickness of ~780 nm and average hexagonal grain size of ~200 nm exhibited the average visible transmittance 85%, refractive index 1.74, and packing density 0.84 was fabricated under the optimum parameters: 0.05 M, 75 °C, 6 h, multiple-stepwise solution-growth route, and ZnO seed layer with an average grain size of ~20 nm. As we demonstrate here, the technique is easily controlled, low temperature, and low cost, and can be used to produce large-scale high quality optical thin films.
致謝____________________________________________Ⅱ
中文摘要________________________________________Ⅲ
英文摘要________________________________________Ⅳ
總目錄__________________________________________Ⅴ
第一章 緒論
1-1 研究動機________________________________ 001
1-2 研究導論________________________________ 002
1-3 材料簡介________________________________ 003
第二章 理論與文獻回顧
2-1 氧化鋅成膜機制__________________________ 006
2-2 溶膠凝膠法______________________________ 007
2-2-1 溶膠凝膠法反應機制 007
2-2-2 溶膠凝膠法的原理 007
2-2-3溶膠凝膠法的優缺點 010
2-3 塗 佈____________________________________012
2-4 氧化鋅奈米柱反應機制_____________________014
2-4-1 化學溶液成長法反應機制 014
2-4-2 氣體-液體-固體反應機制 017
2-4-3 液體-固體機制 018
2-5 化學溶液成長法___________________________019
2-6 其他方法成長氧化鋅奈米柱_________________021
2-6-1 金屬有機化學氣相沉積法 021
2-6-2 以奈米級孔洞之模具成長 022
2-7 穿透光譜_________________________________023
2-7-1 測量原理 023
2-7-2 吸收係數與能階計算 026
2-7-3 折射率(refraction index, n)計算 026
2-7-4 堆積密度(packing density, P)計算 028
2-8 氧化鋅材料發光機制_______________________030
第三章 實驗部分
3-1 儀器設備_________________________________033
3-1-1 製程設備 033
3-1-2 量測設備 033
3-2 藥品_____________________________________036
3-3 實驗流程_________________________________037
3-3-1 基板處理 038
3-3-2 氧化鋅薄膜 038
3-3-3 摻雜鋁之氧化鋅薄膜 041
3-3-4 氧化鋅奈米柱 042
第四章 實驗結果
4-1 奈米柱成長之晶種層參數___________________046
4-1-1 有無晶種層對成長氧化鋅奈米柱的影響 046
4-1-2 晶種層退火溫度的影響 048
4-2 成長奈米柱的環境溫度_____________________054
4-3 成長奈米柱的溶液濃度_____________________058
4-4 成長奈米柱的時間_________________________063
4-5 成長奈米柱薄膜的技術_____________________067
4-6 氧化鋅奈米柱薄膜之物理特性_______________074
4-6-1 穿透光譜 076
4-6-2 X-ray diffraction, XRD 080
4-6-3 The photoluminescence, PL 083
第五章 結論____________________________________085
第六章 未來方向
6-1 有序排列-光子晶體_______________________089
6-1-1 光子晶體簡介 089
6-1-2 電子束直寫 093
6-2 摻雜稀土元素之氧化鋅奈米柱薄膜 098
6-3 軟性電子技術應用-可撓式基板 099
6-4 抗反射層應用 101
第七章 Reference________________________________102
1.M. H. Huang, S. Mao, H. Feick, et al., Science 292 (2001) 1897.
2.Y. B. Li, Y. Bando, T. Sato, et al., Applied Physics Letters 81 (2002) 144.
3.B. D. Yao, Y. F. Chan, and N. Wang, Applied Physics Letters 81 (2002) 757.
4.V. Gupta, P. Bhattacharya, Y. I. Yuzuk, et al., Journal of Crystal Growth 287 (2006) 39.
5.K. S. Kim, H. W. Kim, Physica B 328 (2003) 368.
6.C. L. Wu, L. Chang , H. G. Chen, et al., Thin Solid Films 498 (2006) 137.
7.張立德、牟季美, 奈米材料和奈米結構 (2002).
8.馬振基, 奈米材料科技原理與應用. (2003).
9. P. (Pierre) Villars, Crystallographic data for intermetallic phases, (1997).
10.N. Yamazoe, Sensors and Actuators B 5 (1991) 7.
11.G. Agarwal and Robert F. Speyer, Journal of The Electrochemical Society 145 (1998) 2920.
12.J. T. Hu, T. W. Odom, and C. M. Lieber, Accounts of Chemical Research 32 (1999) 435.
13.L. Dong, J. Jiao, D. W. Tuggle, et al., Applied Physics Letters 82 (2003) 1096.
14.M. Law, L. E. Greene, J. C. Johnson, et al., Nature Materials 4 (2005) 455.
15.H. M. Kim, Y. H. Cho, H. Lee, et al., Nano Letters 4 (2004) 1059-1062.
16.S. Huang, X. Cai, and J. Liu, Journal of the American Chemical Society 125 (2003) 5636.
17.R. C. Wang, C. P. Liu, J. L. Huang, et al., Applied Physics Letters 87 (2005) 013110.
18.D. J. Kang, J. S. Kim, S. W. Jeong, et al., Thin Solid Films 475 (2005) 160.
19.H. Ko, W. P. Tai, K. C. Kim, et al., Journal of Crystal Growth 277 (2005) 352.
20.K. Haga, M. Kamidaira, Y. Kashiwaba, et al., Journal of Crystal Growth 214 (2000) 77.
21.A. Tsukazaki, A. Ohtomo, T. Onuma, et al., Nature Materials 4 (2005) 42.
22.H. Gomez, A. Maldonado, M. de la L. Olvera, et al., Solar Energy Materials and Solar Cells 87 (2005) 107.
23.J. Lu, Z. Ye, J. Huang, et al., Applied Surface Science 207 (2003) 295.
24.T. Minami, S. Ida, T. Miyata, et al., Thin Solid Films 445 (2003) 268.
25.C. Shaoqiang, Z. Jian, F. Xiao, et al., Applied Surface Science 241 (2005) 384.
26.M. E. Straumanis, B. Jirhennsons, Colloid Chemistry (1962).
27.M. D. Galanin, Luminescence centers of rare earth ions in crystal phosphors, Nova Science Publishers (1988).
28.陳慧英, 溶膠-凝膠法在薄膜製備上之應用, 化工技術, 無機薄膜之應用專輯 11.
29.C. J. Brinker and G. W. Scherer, Sol-gel science. Academic Press Boston (1990).
30.J. Livage and M. Henry, Eds JD Mackenzie and DR Ulrich, John Wiley& Sons: New York 183 (1988).
31.C. J. Brinker and G. W. Scherer, Journal of Non-Crystalline Solids 70 (1985) 301.
32.D. C. Bradley, R. C. Mehrotra, and D. P. Gaur, (1978).
33.J. Zarzycki, M. Prassas, and J. Phalippou, Journal of Materials Science 17 (1982) 3371.
34.R. C. Richardson and E. N. Smith, Experimental Techniques in Condensed Matter Physics at Low Temperatures (1998).
35.W. Liang, C. R. Martin, J. Am. Chem. Soc., 112 (1990) 9666.
36.W. Z. Zhong, G. Z. Liu, and E. W. Shi, Science in China Series B 37 (1994) 1288.
37.W. J. Li, E. W. Shi, M. Y. Tian, et al., Journal of Materials Research 14 (1999) 1532.
38.R. S. Wagner and W. C. Ellis, Physics Letters B 4 (1964) 89.
39.P. Yang and C. M. Lieber, Journal of Materials Research 12 (1997) 2981.
40.L. Vayssieres, K. Keis, A. Hagfeldt, et al., Chemistry of materials 13 (2001) 4395.
41.R. B. Peterson, C. L. Fields, and B. A. Gregg, Langmuir 20 (2004) 5114.
42.L. E. Greene, M. Law, J. Goldberger, et al., Angewandte Chemie-International Edition 42 (2003) 3031.
43.Z. Li, X. Huang, J. Liu, et al., Materials Letters 62 (2008) 1503.
44.W. I. Park, D. H. Kim, S. W. Jung, et al., Applied Physics Letters 80 (2002) 4232.
45.W. Lee, M. C. Jeong, and J. M. Myoung, Acta Materialia 52 (2004) 3949.
46.Chik H, Liang J, Cloutier SG, et al., Applied Physics Letters 84 (2004) 3376
47.Hecht, Optics, (2003) 491.
48.F. A. Jenkins, H. E. White, Fundamentals of Optics, McGraw-Hill Book Company (1957).
49.Hecht, Optics, (2003) 422.
50.N. Serpone, D. Lawless, and R. Khairutdinov, Journal of Physical Chemistry C 99 (1995) 16646.
51.S.T. Tan, B.J. Chen, X.W. Sun, et al., Journal Applied Physics 98 (2005) 013505.
52.D. Jiles, Introduction to the Electronic Properties of Materials. CRC Press (2001).
53.R. Swanepoel, Journal of Physics E: Scientific Instruments 16 (1983) 1214.
54.M. Harris, H.A. Macleod, S. Ogura, et al., Thin Solid Films 57 (1979) 173.
55.H. K. Pulker, Applied Optics 18 (1979) 1969.
56.S. Cho, J. Ma, Y. Kim, et al., Applied Physics Letters 75 (1999) 2761.
57.W. I. Park, Y. H. Jun, S. W. Jung, et al., Applied Physics Letters 82 (2003) 964.
58.Y. Chen, D.M. Bagnall, H.J. Koh, et al., Journal Applied Physics 84 (1998) 3912.
59.J. M. Wang, and L. Gao, Journal Materials Chemistry 13 (2003) 2551.
60.K. Vanheusden, C. H. Seager, W. L. Warren, et al., Applied Physcis Letters 68 (1996) 403.
61.D. Jiles, Introduction to the Electronic Properties of Materials, Chapman & Hill, (1994).
62.S. H. Mohamed, A. M. A. El-Rahman and A. M. Salem, Journal of Physics and Chemistry of Solids 67 (2006) 2351.
63.V. Srikant, and D.R. Clarke, Journal Applied Physics 81 (1997) 6357.
64.B. Z. Dong, G. J. Fang, J. F. Wang, et al., Journal Applied Physics 101 (2007) 033713.
65.T. S. Moss, Proc. Phys. Soc. London, Sect. B 67 (1954) 755.
66.E. Burstein, Physical Review 93 (1954) 632.
67.Y. G. Wang, S. P. Lau, H. W. Lee, et al., Journal Applied Physics 94 (2003) 354
68.N. Ohashi, T. Sekiguchi, K. Aoyama, et al., Journal Applied Physics 91 (2002) 3658.
69.X. L. Wu, G. G. Siu, C. L. Fu, et al., Applied Physics Letters 79 (2001) 2285.
70.S. A. Studenikin, N. Golego, and M. Cocivera, Journal Applied Physics 84 (1998) 2287.
71.E. Yablonovitch, Physical Review Letters 58 (1987) 2059.
72.S. John and T. Quang, Physical Review Letters 76 (1996) 2484.
73.J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press (1995).
74.盧贊文、李柏璁, 物理雙月刊, 廿七卷五期 (2005)
75.C. Meier and K. Hennessy, Applied Physics Letters 90 (2007) 143113.
76.L. Chen and E. Towe, Selected Topics in Quantum Electronics, IEEE Journal of 12 (2006) 117.
77.P. T. Lee, T. W. Lu, J. H. Fan, et al., Applied Physics Letters 90, 151125 (2007).
78.Y. Akahane, T. Asano, B. S. Song, et al., Nature 425 (2003) 944.
79.J. C. Knight, J. Arriaga, T. A. Birks, et al., Photonics Technology Letters, IEEE 12 (2000) 807.
80.C. Meier, K. Hennessy, E. D. Haberer, et al., Applied Physics Letters 88 (2006) 031111.
81.V. Mizeikis, K. K. Seet, S. Juodkazis, et al., Optics Letters 29 (2004) 2061.
82.J. Vuakovi, M. Lonear, H. Mabuchi, et al., Physical Review E 65 (2001) 16608.
83.H. Takano, Y. Akahane, T. Asano, et al., Applied Physics Letters 84 (2004) 2226.
84.L. Douglas, R. Mundle, R. Konda, et al., Optical Materials 33 (2008) 815.
85.W. C. Yang, C. W. Wang, J. H. He, et al., Physica Status Solidi A 205 (2008) 1190.
86.F. Ran, L. Miao, S. Tanemura, et al., Materials Science and Enggineering B 148 (2008) 35.
87.J. Wang, M. J. Zhou, S. K. Hark, et al., Applied Physical Letters 89 (2006) 221917.
88.Y. Bai, Y. Wang, K. Yang, et al., Journal of Physical Chemistry C 112 (2008) 12259.
89.C. Lee, et al., Journal of Nanoscience and Nanotechnology 5 (2005) 1088.
90.M. Matsumura, R. P. Camata Thin Solid Films 476 (2005) 317.
91.Z. L. Pei, X. B. Zhang, G. P. Zhang, et al., Thin Solid Films 497 (2006) 23.
92.X. Hao, J. Ma, D. Zhang, et al., Applied. Surface Science 183 (2001) 137.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊