跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳仲軒
研究生(外文):Chung-Hsuan Wu
論文名稱:結合水氣自組裝與雙團聯共聚物相分離技術製作微-奈米結構表面
論文名稱(外文):Fabrication of Micro/Nano-Structured Surfaces by the Combination of Breath Figure and Micro-Phase Separation of Di-Block Copolymer Techniques
指導教授:許佳振
指導教授(外文):Chia-Chen Hsu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:58
中文關鍵詞:疏水性接觸角雙團聯共聚物微相分離
外文關鍵詞:hydrophobiccontact angledi-block copolymermicrophase separation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
根據Wenzel 與Cassie 的理論,製作具有微/奈米結構之表面,
可增加其表面粗糙度,並增加表面疏水性。在微米結構方面,利用水
氣自組裝製作之Breath Figures 之模具壓印方法,翻印出PDMS 之微
米突起結構,並將PDMS 突起結構再轉印在平坦之SU8-2002 薄膜
上,製作凹槽微米結構。在製作奈米結構方面,使用團聯式共聚物
(block coplymers, BCPs)之高分子PS-b-PMMA,其分子量為501k,將
之塗佈於具凹槽微米結構之SU8-2002 上, 並利用溶劑誘導
(solvent-induce)的方式,使PS-b-PMMA 以微相分離(phase separation)
的機制產生奈米結構,再利用醋酸蝕刻樣品,使其奈米結構之表面起
伏變大。最後使用PDMS 於所完成的微/奈米結構樣品表面進行翻
模,製作具有微/奈米結構之高疏水性之表面,並且對其表面進行疏
水性量測與分析。
In this work, a novel method is presented to fabricate micro/nano
structured surface with large surface roughness to increase the
hydrophobic property according to Wenzel and Cassie theories. In the
fabrication process, the breath figures’ molds were adopted to imprint
PDMS bulges by molding method. The PDMS bulges were then
imprinted on SU-8 2002 thin films to fabricate micro concave structures.
In the fabrication of nano structures, the BCPs of PS-b-PMMA with
501K molecular weight were spin-coated on SU-8 2002 concave
structures and phase separated into nano balls morphologies by solvent
induced method. To increase the surface roughness of nano structures, the
BCPs were etched by acetic acid. The micro/nano structures (SU-8 2002
concave structures with BCPs nano balls) were then transferred into
PDMS thin film. The surface hydrophobic properties of PDMS
micro/nano structures were measured by contact angle technique.
第一章序論……………………………………………………………..1
第二章實驗原理………………………………………………………13
2-1 材料表面之濕潤性原理………………………………………...13
2-2 雙團聯式共聚物微相分離型態與原理………………………...16
2-3 以溶劑誘導的方法使團聯式共聚物形成微相分離之原理…...20
第三章實驗步驟………………………………………………………24
3-1 實驗材料………………………………………………………...24
3-2 實驗項目………………………………………………………...25
3-2-1 清洗玻璃基板……………………………………………...25
3-2-2 製作微米等級的聚甲基矽氧烷結構……………………...25
3-2-3 利用壓印及溶劑誘導方法製程具有微/奈米等級之結構..29
第四章結果與討論……………………………………………………33
4-1 表面接觸角之量測及計算方法………………………………...33
4-1-1 沒有任何結構的SU8-2002 之接觸角計算………………..33
4-1-2 具有微/奈米結構之PDMS 接觸角計算…………………..36
4-2 疏水性與表面粗糙性之關係研究……………………………...37
4-2-1 不同的材料及結構之疏水性變化之研究………………...37
4-2-2 不同的醋酸蝕刻時間對於疏水性的影響之研究………...41
4-2-3 各種結構之PDMS模具之疏水性研究……………………48
第五章結論……………………………………………………………53
參考文獻………………………………………………………………..54
[1] X. Li, D. Reinhoudt and M. Crego-Calama, “What do we need for a
superhydrohophobic? A review on the recent progress in the
preparation of superhydrophobic durfaces,” Chem. Soc. Rev., 36,
1350-1368 (2007).
[2] M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D.Yu and Y. Chen,
“Artificial Lotus Leaf by Nanocasting,” Langmuir, Vol. 21, No. 19,
8978-8981 (2005).
[3] W. Lee, M. K. Jin, W. C. Yoo and J. K. Lee, “Nanostructing of a
Polymeric Substrate with Well-Defined Nanometer-Scale
Topography and Tailored Surface Wettability,” Langmuir, Vol. 20,
No. 18, 7665-7669 (2004).
[4] http://www.digit-life.com/articles2/intel-65nm/.
[5] R. Furstner, W. Barthlott, C. Neinhuis and P. Walzel, “Wetting and
Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,”
Langmuir, Vol. 21, No. 3, 956-961 (2005).
[6] S. Minko, M. Muller, M. Motornov, M. Nitschke, K. Grundke and M.
Stamm, “Two-Level Structured Self-Adaptive Surfaces with
Reversibly Tunable Properties,” J. Am. Chem. Soc., 125, 3896
(2003).
[7] E. Hosono, S. Fujihara, I. Honma and H. S. Zhou,
“Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up
Process,” J. Am. Chem. Soc., 127, 13458 (2005).
[8] J. Y. Shiu, C. W. Kuo, P. L. Chen and C. Y. Mou, “Fabrication of
Tunable Superhydrophobic Surfaces by Nanosphere Lithography,”
Chem. Mater., 16, 561 (2004).
[9] T. Sun, G. J. Wang, H. Liu, L. Feng, L. Jiang and D. B. Zhu, “Control
over the Wettability of an Aligned Carbon Nanotube Film,” J. Am.
Chem. Soc., 125, 14996 (2003).
[10] Q. D. Xie, J. Xu, L. Feng, L. Jiang, W. H. Tang, X. D. Luo and C. C.
Han, “Facile Creation of a Super-Amphiphobic Coating Surface with
Bionic Microstructure,” Adv. Mater., 16, 302 (2004).
[11] 巫晟逸, 自組裝高分子光子晶體製備, 國立中正大學物理研究所
碩士論文, (2002)
[12] C. Y. Wu, T. H. Chiang and C. C. Hsu, “Fabrication of Microlens
Array Diffuser Films with Controllable Haze Distribution by
Combination of Breath Figures and Replica Molding Methods,”
Optics Express,” Vol 21, No. 24 (2008)
[13] E. G. Shafrin and W. A. Zisman, “Constitutive Relations in the
Wetting of Low Energy Surfaces and the Retraction Method of
Preparing Monolayers,” J. Phys. Chem., 64(5), 519-524 (1960).
[14] R. Tadmor, “Line Energy and the Relation between Advancing
Receding, and Young contact angle,’ Langmuir, Vol. 20, No. 18
(2004).
[15] Wikimedia Commons.
http://en.wikipedia.org/wiki/File:Contact_angle.svg
[16] A. Marmur, ”Wetting on Hydrophobic Rough Surfaces: To Be
Heterogeneous or Not To Be?” Langmuir, Vol. 19,No. 20 (2003).
[17] L. laibler, “Theory of Microphase Separation in Block Copolymers,”
Macromolecule, 13, 1602 (1980).
[18] C. Park, J. Yoon and E. L. Thomas, “Enabling Nanotechnology with
Self Assembled Block Copolymer Patterns,” Polymer, 44, 6725-6760
(2003).
[19] C. Carelli, R. A. L. Jones, R. N. Young, R. Cubitt, R. Dalgliesh, F.
Schmid and M. Sferrazza, “The Effects of Long-Ranged and
Short-Ranged Forces in Confined Near-critical Polymeric Liquid,”
Europhys. Lett., 71, 763-769 (2005).
[20] K. I. Winey, E. L. Thomas and L. J. Fetters, J. Chem. Phys., 95, 9376
(1991).
[21] J. Peng, D. H. Kim and W. Knoll, “Morphologies in
Solvent-Annealed Thin Films of Symmetric Diblock Copolymer,” J.
Chem. Phy., 125, 064702 (2006).
[22] Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li and Y. Han, ”Morphology
Development of Ultrathin Symmetric Diblock Copolymer,”
Macromolecules, Vol. 37, No. 19, 7301-7307 (2004).
[23] 江定軒, 製作光學微透鏡陣列支新型製程研究, 國立中正大學
光機電整合工程研究所碩士論文, (2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊