跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/16 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李沛縈
研究生(外文):Pei Ying Lee
論文名稱:不同近心咬合遠心面(MOD)的修復體合併非齲蝕性齒頸缺損(NCCL)的修復體於人類上顎小臼齒的微滲漏現象
論文名稱(外文):Microleakage in Human Maxillary Premolar in Different Mesio-occlusal-distal (MOD) Restoration Combined with Non-caries Cervical Lesions (NCCL) Restoration
指導教授:林峻立林峻立引用關係
指導教授(外文):C. L. Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:顱顏口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:130
中文關鍵詞:冷熱循環測試壓力疲勞測試修復體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:715
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
背景
牙齒結構完整性會因齲蝕、外傷、磨耗及牙周病變等因素而產生缺損。當牙齒曾受到齲蝕MOD修復再進行NCCL修復時,其窩洞設計對修復體與牙齒力學的影響變得複雜,致使牙醫師使用直接法進行修復時常感到困惑。本研究的目的為了解小臼齒MOD與NCCL窩洞以複合樹脂修復時,所產生的生物力學行為,進而影響修復體的微滲漏現象。
方法
實驗選用大小相近的人類上顎小臼齒40顆,針對MOD窩洞深度1/2或2/3,NCCL窩洞深度1毫米或2毫米,NCCL窩洞角度45度或90度,共八組,以直接法進行複合樹脂修復,所有試件皆以冷熱循環(2,000次,攝氏5度-55度,置放時間30秒)與垂直壓力疲勞測試(20,000次,49牛頓),再以2﹪basic fuchsin dye,24小時,進行染色。在切片觀察中,觀察的界面包括MOD窩洞的咬合面中,頰側的軸面(MAB),腭側的軸面(MAP);MOD窩洞的鄰接窩洞中,近心側的牙齦面(MGM),遠心側的牙齦面(DGM);NCCL窩洞的咬合面(NO),牙齦面(NG)。以Mann-Whitney U test分析結果。
結果
MOD窩洞深度1/2在NCCL窩洞中的咬合面壁及牙齦壁(NO及NG)其微滲漏情形明顯高於深度2/3的窩洞(p=0.02)。NCCL窩洞深度1mm在NCCL窩洞中的咬合面壁(NO)的微滲漏情形明顯高於深度2mm的窩洞(p=0.01)。NCCL窩洞角度對所有界面的微滲漏皆無差異。進一步分析,NCCL窩洞的深度1mm比MOD窩洞的深度1/2易造成NCCL窩洞中的咬合面壁(NO)的微滲漏情形增加(odds ratio=13.2, p=0.02 vs odds ratio=10.8, p=0.03)。
結論
在垂直壓力下,MOD窩洞的深度不影響MOD修復體的微滲漏但會影響NCCL修復體的微滲漏。同時NCCL窩洞深度較淺,其NCCL修復體的微滲漏情形較嚴重。
Background
The restorative treatment of MOD cavity and NCCL cavity will result in microleakage and destruction of teeth. The microleakage causes post-operative sensitivity, second caries and failure of the restorations. The present study was to evaluate the impact of biomechanical change of the teeth after the restoration of MOD cavity and NCCL cavity on the microleakage.
Methods
In the present study, the depth of MOD cavity (1/2 or 2/3), depth of NCCL (1mm or 2 mm), and angle of NCCL cavity (45°or 90°)were used to define eight study groups (each group had five premolars). Direct composite resin restoration was used. After the thermocycling test (2000times, 5℃-55℃for 30 second), and vertical fatigue loading test (20,000times, 49N), the premolars were dyed with 2﹪basic fuchsin dye for 24 hours, and cut in to slice for further microscopic examination.
Results
The premolar with MOD cavity depth (1/2) had more microleakage than MOD cavity depth (2/3) in occlusal wall(NO)and gingival wall (NG)(p=0.02). The premolar with NCCL cavity depth (1mm) had more microleakage than those with NCCL cavity depth (2mm) in NO. The NCCL cavity angle did not increase microleakage in all section. After multivariate logistical regression, both NCCL cavity depth (1mm) and MOD cavity depth (1/2) increase the microleakage in NO (NCCL, odds ratio=13.2, p=0.02; MOD, odds ratio=10.8, p=0.03).
Conclusion
Under vertical loading, the depth of MOD cavity did not influence the microleakage of the MOD restoration, however, it would influence the microleakage of the NCCL restoration. The depth of NCCL cavity was shallower; the microleakage of the NCCL restoration was increased.
目錄
指導教授推薦書.........................
論文口試委員會審定書.........................
國家圖書館授權書...................iii
長庚大學授權書....................iv
誌謝..........................v
中文摘要.......................vi
英文摘要.......................viii
目錄 .........................x
表格目錄.......................xiii
圖片目錄.......................xiv

第一章 緒論 ......................1
1.1 研究背景......................1
1.1.1 牙齒功能與結構及牙齒缺損因素概述 ........1
1.1.2 牙體修復治療 ..................6
1.1.3 MOD及NCCL修復體同時存在時可能之破壞原因...7
1.1.4 體外冷熱循環測試................11
1.1.5 壓力疲勞實驗測試................13
1.2 研究動機 .....................15
1.3 文獻回顧 .....................16
1.3.1文獻回顧目的..................16
1.3.2小臼齒MOD修復體之生物力學相關文獻.......17
1.3.3小臼齒NCCL修復體之生物力學相關文獻......20
1.3.4小臼齒同時存在MOD與NCCL修復體之生物力學相關文獻.......................21
1.3.5文獻回顧總結..................23
1.4 研究目的 .....................25

第二章 材料與方法...................26
2.1 研究流程概述 ...................26
2.2 小臼齒MOD及NCCL窩洞修復參數建立與組數確定 ..26
2.3 試件收集與包埋 ..................28
2.4 窩洞建立與複合樹脂修復 ..............29
2.5 冷熱循環測試 ...................32
2.6 垂直壓力疲勞測試 .................33
2.7 試件染色與切片 ..................34
2.8 切面觀察 .....................35
2.9 統計分析 .....................36

第三章 研究結果....................37

第四章 討論......................40
4.1 冷熱循環測試與壓力疲勞測試對微滲漏的影響 .....40
4.2 MOD窩洞深度對微滲漏的影響............42
4.3 NCCL窩洞深度與角度對微滲漏的影響.........44
4.4 各界面的微滲漏情形 ................46
4.5 本實驗的限制 ...................48

第五章 結論......................50
參考文獻.......................51

表目錄
表1-1、文獻比較-體外人類小臼齒測試結果.......64
表1-2、文獻比較-電腦模擬分析結果..........65
表2-1、各組參數設定.................66
表3-1、各組間牙齒大小................67
表3-2、各組不同界面微滲漏比較............67
表3-3、各參數與不同界面的比較............68
表3-4、影響NO處的微滲漏的因子...........69
表3-5、各界面的比較.................69

圖目錄
圖1-1、牙齒構造示意圖 ................70
圖1-2、造成齲蝕的因子 ................70
圖1-3、近心咬合遠心面(MOD)窩洞 ..........71
圖1-4、非齲蝕性齒頸部缺損(NCCL)窩洞........71
圖1-5、牙齒上同時有MOD及NCCL窩洞 ........72
圖1-6、剩餘齒質與修復體體積比例示意圖 ........72
圖1-7、小臼齒MOD窩洞示意圖.............73
圖1-8、NCCL窩洞示意圖................73
圖1-9、咬合面銀汞合金修復體與齒頸部玻璃離子體修復體的斷裂示意圖....................74
圖2-1、實驗流程表 ..................75
圖2-2、MOD窩洞參數設定...............76
圖2-3、NCCL窩洞參數設定...............76
圖2-4、小臼齒包埋 ..................77
圖2-5、窩洞建立 ...................77
圖2-6、窩洞複合樹脂修復 ...............78
圖2-7、冷熱循環機測試機 ...............78
圖2-8、垂直壓力疲勞測試 ...............79
圖2-9、試件染色 ...................80
圖2-10、試件二次包埋後切片..............80
圖2-11、試件所需觀察的界面..............81
圖3-1、各界面的微滲漏情形 ..............82
圖4-1、垂直施力對MOD窩洞深度的影響.........83
圖4-2、垂直施力對NCCL窩洞深度的影響 ........83
參考文獻
1.Grippo JO. “Abfractions: a new classification of hard tissue lesions of teeth.” Journal of Esthetic Dentistry 3(1):14-9, 1991
2.Goel VK, et al. “Stresses at the dentinoenamel junction of human teeth--a finite element investigation.” [see comment] Journal of Prosthetic Dentistry 66(4):451-9, 1991.
3.Aw TC, et al. “Characteristics of noncarious cervical lesions: a clinical investigation.” Journal of the American Dental Association 133(6):725-33, 2002.
4.Levitch LC, et al. “Non-carious cervical lesions.” [Review] [104 refs] Journal of Dentistry 22(4):195-207, 1994.
5.Borcic J, et al. “The prevalence of non-carious cervical lesions in permanent dentition.” Journal of Oral Rehabilitation 31(2):117-23, 2004.
6.Lee WC, Eakle WS. “Stress-induced cervical lesions: review of advances in the past 10 years.” [Review] [65 refs] Journal of Prosthetic Dentistry 75(5):487-94, 1996.
7.Piotrowski BT, Gillette WB, Hancock EB. “Examining the prevalence and characteristics of abfractionlike cervical lesions in a population of U.S. veterans.” [see comment] Journal of the American Dental Association 132(12):1694-701; quiz 1726-7, 2001.
8.Hansen EK. “Five-year study of cervical erosions restored with resin and dentin-bonding agent.” Scandinavian Journal of Dental Research 100(4):244-7, 1992.
9.Feilzer AJ, De Gee AJ, Davidson CL. “Quantitative determination of stress reduction by flow in composite restorations.” Dental Materials 6(3):167-71, 1990.
10.Hansen EK. “Contraction pattern of composite resins in dentin cavities.” Scandinavian Journal of Dental Research 90(6):480-3, 1982.
11.Ichim I, et al. “Mechanical evaluation of cervical glass-ionomer restorations: 3D finite element study.” Journal of Dentistry 35(1):28-35, 2007.
12.Aboush YE, Jenkins CB. “An evaluation of the bonding of glass-ionomer restoratives to dentine and enamel.” British Dental Journal 161(5):179-84, 1986.
13.Hotz P, et al. “The bonding of glass ionomer cements to metal and tooth substrates.” British Dental Journal 142(2):41-7, 1977.
14.Asmussen E, Peutzfeldt A. “Long-term fluoride release from a glass ionomer cement, a compomer, and from experimental resin composites.” Acta Odontologica Scandinavica 60(2):93-7, 2002.
15.Small BW. “Return to the rubber dam.” General Dentistry 56(5):412-4, 2008.
16.Mongeau SW. “USAF dental readiness classifications and caries-risk assessment.” Military Medicine 173:42-7, 2008.
17.Evans RW, et al. “The Caries Management System: an evidence-based preventive strategy for dental practitioners. Application for adults.” Australian Dental Journal 53(1):83-92, 2008.
18.Farsi N. Dental caries in relation to salivary factors in Saudi population groups. Journal of Contemporary Dental Practice [Electronic Resource] 9(3):16-23, 2008.
19.Opdam NJ, et al. “Longevity and reasons for failure of sandwich and total-etch posterior composite resin restorations.” Journal of Adhesive Dentistry 9(5):469-75, 2007.
20.Santini A, et al. “Effect of prolonged thermal cycling on microleakage around Class V cavities restored with glass-ceramic inserts with different coefficients of thermal expansion: an in vitro study.” Primary Dental Care 13(4):147-53, 2006.
21.Hagge MS, Lindemuth JS. “Effect of thermocycling on the fracture strength of intact third molars stored for two different time periods.” Military Medicine 167(8):616-9, 2002.
22.Rossomando KJ, Wendt SL, Jr. “Thermocycling and dwell times in microleakage evaluation for bonded restorations.” Dental Materials 11(1):47-51, 1995.
23.Gale MS, Darvell BW. “Thermal cycling procedures for laboratory testing of dental restorations.” [Review] [177 refs]. Journal of Dentistry 27(2):89-99, 1999.
24.Watanabe EK, et al. “Effects of thermocycling on the tensile bond strength between resin cement and dentin surfaces after temporary cement application.” International Journal of Prosthodontics 12(3):230-5, 1999.
25.Palmer DS, Barco MT, Billy EJ. “Temperature extremes produced orally by hot and cold liquids.” Journal of Prosthetic Dentistry 67(3):325-7, 1992.
26.Janda R, et al. “The effects of thermocycling on the flexural strength and flexural modulus of modern resin-based filling materials.” Dental Materials 22(12):1103-8, 2006.
27.Crim GA, Chapman KW. “Reducing microleakage in Class II restorations: an in vitro study.” Quintessence International 25(11):781-5, 1994.
28.Retief DH, et al. “Evaluation of the Syntac bonding system.” American Journal of Dentistry 6(1):17-21, 1993.
29.Sidhu SK. “Sealing effectiveness of light-cured glass ionomer cement liners.” Journal of Prosthetic Dentistry 68(6):891-4, 1992.
30.Lacy AM, et al. “In vitro microleakage at the gingival margin of porcelain and resin veneers.” Journal of Prosthetic Dentistry 67(1):7-10, 1992.
31.Krejci I, Kuster M, Lutz F. “Influence of dentinal fluid and stress on marginal adaptation of resin composites.” Journal of Dental Research 72(2):490-4, 1993.
32.Harper RH, et al. “In vivo measurements of thermal diffusion through restorations of various materials.” Journal of Prosthetic Dentistry 43(2):180-5, 1980.
33.Brown WS, Jacobs HR, Thompson RE. “Thermal fatigue in teeth.” Journal of Dental Research 51(2):461-7, 1972.
34.Kim JY, et al. “Semi-quantitative analysis of early microleakage around amalgam restorations by fluorescent spectrum method: a laboratory study.” Dental Materials Journal 11(1):45-58, 1992.
35.Campos PE, et al. “Evaluation of the cervical integrity during occlusal loading of Class II restorations.” Operative Dentistry 33(1):59-64, 2008.
36.Mandras RS, Retief DH, Russell CM. “The effects of thermal and occlusal stresses on the microleakage of the Scotchbond 2 dentinal bonding system.” Dental Materials 7(1):63-7, 1991.
37.Murphy TR. “The timing and mechanism of the human masticatory stroke.” Archives of Oral Biology 10(6):981-94, 1965.
38.Gibbs CH, et al. “Chewing movements in relation to border movements at the first molar.” Journal of Prosthetic Dentistry 46(3):308-22, 1981.
39.DeLong R, Douglas WH. “Development of an artificial oral environment for the testing of dental restoratives: bi-axial force and movement control.” Journal of Dental Research 62(1):32-6, 1983.
40.De Boever JA, et al. “Functional occlusal forces: an investigation by telemetry.” Journal of Prosthetic Dentistry 40(3):326-33, 1978.
41.Stappert CF, et al. “Survival rate and fracture strength of maxillary incisors, restored with different kinds of full veneers.” Journal of Oral Rehabilitation 32(4):266-72, 2005.
42.Mehl C, et al. “Wear of composite resin veneering materials and enamel in a chewing simulator.” Dental Materials 23(11):1382-9, 2007.
43.Sakaguchi RL, et al. “The wear of a posterior composite in an artificial mouth: a clinical correlation.” Dental Materials 2(6):235-40, 1986.
44.Watts DC, Wilson NH, Burke FJ. “Indirect composite preparation width and depth and tooth fracture resistance.” American Journal of Dentistry 8(1):15-9, 1995.
45.Lee MR, et al. “Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration.” Dental Materials 23(3):288-95, 2007.
46.Khera SC, et al. “Parameters of MOD cavity preparations: a 3-D FEM study, Part II.” Operative Dentistry 16(2):42-54, 1991.
47.Goel VK, et al. “Effect of cavity depth on stresses in a restored tooth.” Journal of Prosthetic Dentistry 67(2):174-83, 1992.
48.Lin CL, Chang CH, Ko CC. “Multifactorial analysis of an MOD restored human premolar using auto-mesh finite element approach.” Journal of Oral Rehabilitation 28(6):576-85, 2001.
49.Osborne-Smith KL, et al. “Effect of restored and unrestored non-carious cervical lesions on the fracture resistance of previously restored maxillary premolar teeth.” Journal of Dentistry 26(5-6):427-33, 1998.
50.Ichim I, et al. “Modelling of fracture behaviour in biomaterials.” Biomaterials 28(7):1317-26, 2007.
51.Chinelatti MA, et al. “Influence of Er:YAG laser on cavity preparation and surface treatment in microleakage of composite resin restorations.” Photomedicine and Laser Surgery 24(2):214-8, 2006.
52.Owens BM, Johnson WW. “Effect of insertion technique and adhesive system on microleakage of Class V resin composite restorations.” Journal of Adhesive Dentistry 7(4):303-8, 2005.
53.Owens BM, Johnson WW, Harris EF. “Marginal permeability of self-etch and total-etch adhesive systems.” Operative Dentistry 31(1):60-7, 2006.
54.Ergucu Z, Celik EU, Turkun M. “Microleakage study of different adhesive systems in Class V cavities prepared by Er,Cr:YSGG laser and bur preparation.” General Dentistry 55(1):27-32, 2007.
55.Rigsby DF, et al. “Effect of axial load and temperature cycling on microleakage of resin restorations.” American Journal of Dentistry 5(3):155-9, 1992.
56.Crim GA, Garcia-Godoy F. “Microleakage: the effect of storage and cycling duration.” Journal of Prosthetic Dentistry 57(5):574-6, 1987.
57.Pazinatto FB, et al. “Effect of the number of thermocycles on microleakage of resin composite restorations.” Brazilian Oral Research 17(4):337-41, 2003.
58.Crim GA, Swartz ML, Phillips RW. “Comparison of four thermocycling techniques.” Journal of Prosthetic Dentistry 53(1):50-3, 1985.
59.Hakimeh S, et al. “Microleakage of compomer class V restorations: effect of load cycling, thermal cycling, and cavity shape differences.” Journal of Prosthetic Dentistry 83(2):194-203, 2000.
60.Schuckar M, Geurtsen W. “Proximo-cervical adaptation of Class II-composite restorations after thermocycling: a quantitative and qualitative study.” Journal of Oral Rehabilitation 24(10):766-75, 1997.
61.Shortall AC. “Microleakage, marginal adaptation and composite resin restorations.” British Dental Journal 153(6):223-7, 1982.
62.Schuckar M, Geurtsen W. “Proximo-cervical adaptation of Class II-composite restorations after thermocycling: a quantitative and qualitative study.” Journal of Oral Rehabilitation 24(10):766-75, 1997.
63.Campos PE, et al. “Evaluation of the cervical integrity during occlusal loading of Class II restorations.” Operative Dentistry 33(1):59-64, 2008.
64.Campos PE, Sampaio Filho HR, Barceleiro MO. “Occlusal loading evaluation in the cervical integrity of Class II cavities filled with composite.” Operative Dentistry 30(6):727-32, 2005.
65.Mandras RS, Retief DH, Russell CM. “The effects of thermal and occlusal stresses on the microleakage of the Scotchbond 2 dentinal bonding system.” Dental Materials 7(1):63-7, 1991.
66.Lundin SA, Noren JG. “Marginal leakage in occlusally loaded, etched, class-II composite resin restorations.” Acta Odontologica Scandinavica 49(4):247-54, 1991.
67.Hood JA. “Biomechanics of the intact, prepared and restored tooth: some clinical implications.” [Review] [30 refs] International Dental Journal 41(1):25-32, 1991.
68.Silveira de AC, et al. “Microleakage of seven adhesive systems in enamel and dentin.” Journal of Contemporary Dental Practice 7(5):26-33, 2006.
69.Campos PE, et al. “Evaluation of the cervical integrity during occlusal loading of Class II restorations.” Operative Dentistry 33(1):59-64, 2008.
70.Campos PE, Sampaio Filho HR, Barceleiro MO. “Occlusal loading evaluation in the cervical integrity of Class II cavities filled with composite.” Operative Dentistry 30(6):727-32, 2005.
71.Arisu HD, et al. “The effect of occlusal loading on the microleakage of class V restorations.” Operative Dentistry 33(2):135-41, 2008.
72.Ichim I, Li Q, et al. “Restoration of non-carious cervical lesions Part I. Modelling of restorative fracture.” Dental Materials 23(12):1553-61, 2007.
73.Venturini D, et al. “Effect of polishing techniques and time on surface roughness, hardness and microleakage of resin composite restorations.” Operative Dentistry 31(1):11-7, 2006.
74.Ben-Amar A, Slutzky H, Matalon S. “The influence of 2 condensation techniques on the marginal seal of packable resin composite restorations.” Quintessence International 38(5):423-8, 2007.
75.Minakuchi S, Munoz CA, Jessop N. “Effect of flexural load cycling on microleakage of extended root caries restorations.” Operative Dentistry 30(2):234-8, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top