跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/29 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭雅婷
研究生(外文):Ya Ting Peng
論文名稱:使用者導向創新與理解程度對Web系統採行研究
論文名稱(外文):The study of user oriented innovation and understanding level to Web system adoption
指導教授:邱文科邱文科引用關係
指導教授(外文):W. K. Chiou
學位類別:碩士
校院名稱:長庚大學
系所名稱:工業設計研究所
學門:設計學門
學類:產品設計學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:98
中文關鍵詞:使用者導向創新理解程度web系統採用科技接受模型創新擴散理論
外文關鍵詞:User-oriented innovationUnderstanding levelWeb system adoptionTechnology acceptance modelInnovation diffusion theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:559
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:3
網際網路的使用人口倍數成長,促使Web系統的新興科技快速發展,這樣創新的Web系統採行(system adoption),更是注目的焦點。本研究納入使用者導向創新(user-oriented innovation, UOI)及理解程度(understanding level, UL)因素,建構Web系統採行的評估模型及提出兩大命題。
  Web系統採行包含: 認知有用性(perceived usefulness, PU)、認知易用性(perceived ease of use, PEOU)、使用意願(behavior intention to use, BIU)及相對優勢(relative advantage, RA)、複雜性(complexity, C)五個因素。研究命題為:(一)UOI對於Web創新系統採行有正面影響。(二)理解程度與Web創新系統採行有相關性。
  本研究藉由一個創新的Web系統-3D線上試衣系統-Mimic Fitting作為研究的範例,實驗分為兩個階段,各徵召94位與106位受測者。結果顯示命題一成立,但命題二不成立。這個研究主要的貢獻是構的Web系統採行的模型,連結了UOI及TAM和IDT之間的關係,驗證了UOI對於Web創新系統採行有重要的影響。而UL方面可能是在受試者使用網路經驗造成的結果,未來探討理解程度變項時,可以選擇不同經驗的受試者進行驗證。
The use of the Internet population doubled, web system to promote the rapid development of emerging technologies, this innovative web system to adopt is the focus of attention. This study into the User-oriented innovation(UOI) and understanding level(UL) for the factor, construction of the web system adoption of the assessment model and to make the two propositions.
Web system adoption include: perceived usefulness(PU)﹑perceived ease of use(PEOU) ﹑behavior intention to use(BIU)﹑relative advantage(RA) and complexity(C)for five factors. This research mainly proposed: No 1. UOI for the adoption of web innovation system have a positive impact. No 2. Understanding level and the innovation web adoption system have the relevance.
In this study, by an innovative web system-3D Mimic Fitting for the example, experiment is divided into two phases, there are 94 and 106 testers. The results showed that No 1. is establish, No 2. is not establish. The main contribution of this study is the construction of the web system to adopt the model, link the UOI and TAM and IDT for the relationship, verified the UOI for the adoption of web innovation system has important implications. The UL may have experience in using the Internet of the result, in the future discussion for understanding of the variables, can choose different subjects to verify experience.
誌 謝 v
名詞縮寫對照表 viii
摘要 ix
Abstract xi
目錄 xiii
圖目錄 xvii
表目錄 xix
第一章 緒論 1
1.1研究背景、動機 1
1.2研究目的 4
1.3研究的範圍與限制 5
1.4研究流程 5
第二章 文獻探討 7
2.1 科技接受模型(TAM) 7
2.2 創新擴散理論(IDT) 12
2.3 使用者導向創新(UOI) 17
2.4理解程度(UL) 20
2.4.1功能理解程度(UF) 20
2.4.2圖示理解程度(UI) 21
2.5文獻小結 22
第三章 研究方法 24
3.1 命題與研究架構 24
3.2 操作變項定義 26
3.2.1 使用者導向創新(UOI) 26
3.2.2相對優勢(RA) 27
3.2.3複雜性(C) 28
3.2.4認知有用性(PU) 28
3.2.5認知易用性(PEOU) 29
3.2.6使用意願(BIU) 30
3.2.7功能理解程度(UL) 30
3.2.8圖示理解程度(UI) 32
3.3受試者 32
3.4研究流程與步驟 34
3.5 資料整理與統計分析 38
第四章 研究結果 40
4.1 研究信度與效度 40
4.1.1 效度 40
4.1.2信度 42
4.2 UOI結果 43
4.3 研究命題檢定 47
4.3.1 命題一 47
4.3.1命題二 49
第五章 討論 52
5.1 UOI與Web系統採行 52
5.2 UL與Web系統採行 54
第六章 結論與建議 56
6.1結論 56
6.2設計應用 56
6.3建議 57
參考文獻 60
中文文獻 60
附錄一 72
附錄二 73
附錄三 74
附錄四 75
附錄五 76
附錄六 77
附錄七 78
附錄八 80
附錄九 81
圖目錄
圖1-1. 3D線上試衣系統-Mimic Fitting 4
圖1-2.研究流程圖 6
圖2-1 TAM (Davis, 1989) 7
圖2-2 IDT (Rogers, 1995) 13
圖2-3.概念架構 23
圖3-1.研究架構圖 25
圖3-2.實驗流程圖 35
圖3-3.第一階段實驗流程圖 36
圖3-4. 第二階段實驗流程圖 37
圖3-4.統計分析架構 39
圖4-1.使用者需求-產品特徵分析結果 44
圖4-2.命題驗證結果 51
圖6-1.設計建議程序 59
表目錄
表2-1.網頁系統採行研究探討因子整理表 11
表3-1.受試者基本資料統計 34
表4-1.因素分析結果 42
表4-2.再測信度結果 43
表4-3 使用者需求其他選項結果 45
表4-4.第一題結果 46
表4-5.第二題結果 46
表4-6.使用者需求轉換設計建議 47
表4-7.假設一,成對樣本t檢定分析結果 49
表4-8.假設一,獨立樣本t檢定分析結果 49
表4-9.假設二,相關分析結果 50
中文文獻
1. 尤國任(2005)。國內C2C拍賣網站顧客滿意度與抱怨之內容分析,國科會專題研究計畫成果報告。
2. 台灣網路資訊中心TWNIC (2007)。台灣網際網路使用者調查,取自http://www.twnic.net.tw/total/total_01.htm
3. 邱郁文、方國定(2005)。入口網站使用者行為模式之研究,中華管理評論國際學報,第八卷,第一期。
英文文獻
1. Adams, D.A., Nelson, R.R. & Todd, P.A. (1992). Perceived usefulness, ease of use, and usage of information technology: a replication. MIS Quarterly, 16(2), 227-247.
2. Agarwal, R. & Prasad, J. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision Sciences, 28(3), 557-582.
3. Agarwal, R. & Prasad, J. (1998). The antecedents and consequents of user perception in information technology adoption. Decision Support Systems, 22(1), 15-29.
4. Ajzen, I. (1988). Attitudes, Personality and Behavior. Open University Press: MK.
5. Balcytiene, A. (1999). Exploring individual processes of knowledge construction with hypertext. Instructional Science, 27(3), 303-328.
6. Barolli, L., Koyama, A., Durresi, A. & De Marco, G. (2006). A web-based e-learning system for increasing study efficiency by stimulating learner’s motivation. Information Systems Frontiers, 8(4), 297-306.
7. Bhattacherjee, A. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214.
8. Blanger, F. & Carter, L. (2008). Trust and risk in e-government adoption. Journal of Strategic Information Systems, 17(2), 165-176.
9. Buzhardt, J., Abbott, M., Greenwood, C. & Tapia, Y. (2005). Usability testing of the ClassWide peer tutoring-learning management system. Journal of Special Education Technology, 20(1), 19-29.
10. Chen, L., Gillenson, M.L. & Serrell, D.L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & Management, 39(8), 705-719.
11. Chen, W.F. (2005). Effect of web-browsing interfaces in web-based instruction: a quantitative study. IEEE Transactions on Education, 48(4), 652-657.
12. Cheng, J.M.S., Sheen, G.J. & Lou, G.C. (2006). Consumer acceptance of the internet as a channel of distribution in Taiwan-a channel function perspective. Technovation, 26(7), 856-864.
13. Chiu, C.M. & Wang, E.T.G. (2008). Understanding web-based learning continuance intention: the role of subjective task value. Information & Management, 45(3), 194-201.
14. Cho, V., Cheng, T.C.E. & Lai, W.M.J. (2009). The role of perceived user-interface design in continued usage intention of self-paced e-learning tools. Computers & Education, 53(2), 216-227.
15. Cloete, E. & Doens, M. (2008). B2B e-marketplace adoption in south african agriculture piet ribbers and koen milis were the accepting guest editors for this article. Information Technology for Development, 14(3), 184-196.
16. Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–339.
17. Davis, F.D., Bagozzi, R.P. & Warshaw, P.R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982–1003.
18. De Rouck, S., Jacobs, A. & Leys, M. (2008). Methodology for shifting the focus of e-health support design onto user needs: a case in the homecare field. International Journal of Medical Informatics, 77(9), 589-601.
19. Eriksson, K. & Nilsson, D. (2007). Determinants of the continued use of self-service technology: the case of internet banking. Technovation, 27(4), 159-167.
20. Featherman, M.S. & Pavlou, P.A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474.
21. Fishbein, M. & Ajzen, I. (1975). Belief, attitude, intention and behavior: an introduction to research and theory. Addison-Wesley: MA.
22. Gefen, D., Arahanna, E. & Straub, D.W. (2003a). Trust and TAM in online shopping: an integrated model. MIS Quarterly, 27(1), 51-90.
23. Gefen, D., Karahanna, E., & Straub, D. (2003b). Inexperience and experience with online stores: the importance of TAM and trust. IEEE Transactions on Engineering Management, 50(3), 307-321.
24. Gefen, D.W. & Straub, D.W. (1997). Gender differences in the perception and use of e-mail: an extension to the technology acceptance model. MIS Quarterly, 21(4), 389–400.
25. Gengler, B. (1999). Internet auction sites tackle fraud. Computer Fraud & Security, 1999(2), 6.
26. George Saad, R. & Alexandre Otrakji, C. (2007). First impressions last a lifetime: effect of interface type on disorientation and cognitive load. Computers in human behavior, 23(1), 525-535.
27. Grunert, K.G., Jensen, B.B., Sonne, A.M., Brunso, K., Byrne, D.V., Clausen, C., Friis, A., Holm, L., Hyldig, G. & Kristensen, N.H. (2008).User-oriented innovation in the food sector: relevant streams of research and an agenda for future work. Trends in Food Science & Technology, 19(11), 590-602.
28. Gumussoy, C.A. & Calisir, F. (2009). Understanding factors affecting e-reverse auction use: an integrative approach. Computers in Human Behavior, 25(4), 975-988.
29. Hernndez, B., Jimenez, J. & Martin, M.J. (2008). Extending the technology acceptance model to include the IT decision-maker: a study of business management software. Technovation, 28(1), 112-121.
30. Hong, W., Thong, J.Y.L., Wong, W.M. & Tam, K.Y. (2002). Determinants of user acceptance of digital libraries: an empirical examination of individual differences and system characteristics. Journal of Management Information Systems, 18(3), 97-124.
31. Hsu, C.L., Lu, H.P. & Hsu, H.H. (2007). Adoption of the mobile Internet: an empirical study of multimedia message service (MMS). Omega, 35(6), 715-726.
32. Im, I., Kim, Y. & Han, H. (2007). The effects of perceived risk and technology type on users’ acceptance of technologies. Information & Management, 45(1), 1-9.
33. Jie, S., Peiji, S. & Jiaming, F. (2007). A model for adoption of online shopping: a perceived characteristics of web as a shopping channel view.1-5.
34. Karahanna, E., Straub, D.W. & Chervany, N.L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23(2), 183-213.
35. Kuo, Y.F. & Yen, S.N. (2009). Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25(1), 103-110.
36. Lederer, A.L., Maupin, D.J., Sena, P.M. & Zhuang, Y. (2000). The technology acceptance model and the world wide web. Decision Support System, 29(3), 269-282.
37. Lee, H., Ahn, H. & Han, I. (2006). Analysis of trust in the e-commerce adoption. 6,113.
38. Lee, M. (2009). Factors influencing the adoption of internet banking: an integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141.
39. Liao, H.L. & Lu, H.P. (2008). The role of experience and innovation characteristics in the adoption and continued use of e-learning websites. Computers & Education, 51(4),1405-1416.
40. Lin, J.C.C. & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International Journal of Information Management, 20(3), 197-208.
41. Lingyun, Q. & Dong, L. (2008). Applying tam in b2c e-commerce research: an extended model. Tsinghua Science and Technology, 13(3), 265-272.
42. Lu, H.P., Hsu, C.L. & Hsu, H.Y. (2005). An empirical study of the effect of perceived risk upon intention to use online applications. Information Management & Computer Security, 13(2), 106-120.
43. Lu, Y., Deng, Z. & Wang, B.(2007). An empirical study on chinese enterprises' adoption of mobile services. 3629-3632.
44. Mallat, N., Rossi, M., Tuunainen, V. & O¨o¨rni, A. (2008). An empirical investigation of mobile ticketing service adoption in public transportation. Personal and Ubiquitous Computing, 12(1), 57-65.
45. Mallat, N., Rossi, M., Tuunainen, V.K. & Oorni, A. (2006). The impact of use situation and mobility on the acceptance of mobile ticketing services. 2, 42.
46. McKnight, D. & Choudhury, V. (2006). Distrust and trust in B2C e-commerce: do they differ? 482-491.
47. MIC., (2000). Geographic characteristic of internet population in taiwan. Ref: http://mic.iii.org.tw.
48. Moon, J.W. & Kim ,Y.G. (2001). Extending the TAM for a world-wide-web context. Information & Management, 38(4), 217-230.
49. Moore, G.C. & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3),192-222.
50. Ozen, C. & Basoglu, N. (2007). Exploring the contribution of information systems user interface design characteristics to adoption process. Management of Engineering and Technology. Portland International Center for, 951-958.
51. Park, S.J. & Lee H.J. (2002). The relationship between sleep quality and mattress types. Human Factors and Ergonomics Society, 1,745-749.
52. Pavlou, P. (2003). Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134.
53. Pituch, K.A. & Lee, Y. (2006). The influence of system characteristics on e-learning use. Computers & Education, 47(2), 222-244.
54. Reid, M. & Levy, Y. (2008). Integrating trust and computer self-efficacy with tam: an empirical assessment of customers’ acceptance of banking information systems (BIS) in jamaica. Journal of Internet Banking and Commerce, 12(3), 1-18.
55. Rogers, E.M. (1995). Diffusion of Innovations. (4th ed.) The Free :NY.
56. Rose, R., Kumar, N. & Wemyss, G. (2009). Empirical evaluation of the electronic procurement system acceptance in malaysia. European Journal of Scientific Research, 29(1), 100-112.
57. Selim, H.M. (2003). An empirical investigation of student acceptance of course websites. Computers & Education, 40(4), 343-360.
58. Slyke, G.V., Lou, H. & Day, J. (2002). The impact of perceived innovation characteristics on intention to use groupware. Information Resources Management Journal, 15(1), 5-12.
59. Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85-92.
60. Tan, M. & Teo, T. (2000). Factors influencing the adoption of Internet banking. Information Systems, 1(1), 1-42.
61. Taylor, S. & Todd, P. (1995). Assessing IT usage: the role of prior experience. MIS Quarterly, 19(4), 561–570.
62. Teo, T.S.H., Lim, V.K.G. & Lai, R.Y.C. (1999). Intrinsic and extrinsic motivation in internet usage. Omega, 27(1), 25–37.
63. Thong, J.Y.L., Hong, S.J. & Tam, K.Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
64. Tung, F.C. & Chang, S.C. (2008). Nursing students’ behavioral intention to use online courses: a questionnaire survey. International Journal of Nursing Studies, 45(9), 1299-1309.
65. Tung, F.C., Chang, S.C. & Chou, C.M. (2008). An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. International journal of medical informatics, 77(5), 324-335.
66. Van Tassel, S. & Weitz, B.A. (1997). Interactive home shopping: all the comforts of home. Direct Marketing, 59(10), 40.
67. Venkatesh, V. & Davis, F.D. (1996). A model of the antecedents of perceived ease of use: development and test. Decision Sciences, 27(3), 451-481.
68. Venkatesh, V. & Davis, F.D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management science, 46(2), 186-204.
69. Veryzer, R.W. & Borja de Mozota, B. (2005). The impact of user-oriented design on new product development: an examination of fundamental relationships. Journal of Product Innovation Management, 22(2), 128-143.
70. Wang, K., Wang, E.T.G. & Tai, C.F. (2002). A study of online auction sites in taiwan: product, auction rule, and trading type. International Journal of Information Management, 22(2), 127-142.
71. Wu, I. & Chen, J. (2005). An extension of trust and TAM model with TPB in the initial adoption of on-line tax: an empirical study. International Journal of Human-Computer Studies, 62(6), 784-808.
72. Wu, J.H. & Wang, S.C. (2005). What drives mobile commerce? an empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729.
73. Xiang, Y., Wu, X. & Chen, Q. (2008). Personal innovativeness and initial adoption of m-commerce: toward an integrated model. 652-657.
74. Yi, M.Y., Jackson, J.D., Park, J.S. & Probst, J.C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management, 43(3), 350-363.
75. Yu, C.S. & Tao, Y.H. (2009). Understanding business-level innovation technology adoption. Technovation, 29(2), 92-109.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top