跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯文傑
研究生(外文):Wen Jie Ke
論文名稱:應用溶劑熱法合成硫化銦奈米晶體與其成長機制和光電性質之探討
論文名稱(外文):A study of the growth mechanism for indium sulfide nanocrystals from solvothermal synthesis
指導教授:郭修伯鄭光煒
指導教授(外文):H. P. KuoK. W. Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:93
中文關鍵詞:硫化銦奈米晶體溶劑熱法
外文關鍵詞:indium sulfidenanocrystalsolvothermal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用溶劑熱法(solvothermal method)成功製備出六角形片狀硫化銦奈米晶體。由X光繞射分析(XRD)、穿透式電子顯微鏡(TEM)和X光能量散佈儀(EDAX)分析結果顯示,奈米硫化銦晶體均為立方晶系之單晶結構,且沿著<220>方向延伸成長。晶體粒徑可以藉由反應時間和反應溫度的改變,調控在40 nm至1 μm之間,並藉由調整表面活性劑濃度,可將六角形奈米晶體調控成超薄的奈米帶狀硫化銦。本論文同時探討由不同大小與形態的硫化銦奈米晶體所製備的電極之表面形態的變化,以及表面形態對光電流的影響。在電解質組成為0.35 M硫化鈉和0.25 M亞硫酸鉀的溶液中,於光源強度為100 mW/cm2 之氙燈照射下,並施以0 V(vs. SCE)之外加偏壓時,最大光電流密度可達2.9 mA/cm2。
In this study, ultrathin hexagonal β-In2S3 nanoplates were synthesized using simple solvothermal route. The crystal phase, morphology and composition of as-prepared samples were characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive analysis of X-ray (EDAX), respectively. Experimental data revealed that the as-synthesized sample are cubic β-In2S3 phase with preferential growth along the <220> direction. Shape of β-In2S3 nanocrystals depended on the components and the concentrations of the surfactants. Average particle size can be controlled between 40 nm and 1 μm by adjusting the reaction time and temperatures. The surface morphology of photoelectrode prepared from β-In2S3 nanocrystals affects the photoelectrochemical performance. The maximum photocurrent density reached 2.9 mA/cm2 with an external potential of 0V vs. SCE in 0.35 M sodium sulfide and 0.25 M potassium sulfite solutions under illumination using a Xe lamp at light intensity of 100 mW/cm2.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.1.1 前言 1
1.1.2 奈米晶體的合成方法之簡介 1
1.1.3 晶體成核和成長模式之概述 4
1.2 研究動機與目的 11
第二章 文獻回顧 12
2.1 硫化銦(In2S3)之簡介 12
2.2 硫化銦粉體之合成 12
2.3 硫化銦在光電極領域之應用 22
第三章 實驗方法 25
3.1 實驗藥品 25
3.2 實驗儀器 26
3.3 硫化銦奈米晶體之製備步驟 28
3.4 硫化銦薄膜之製備 29
第四章 結果與討論 30
4.1 以十六烷基胺為表面活性劑合成硫化銦奈米晶體與其結構鑑定 30
4.1.1 前驅物的總濃度變化對晶體形態之影響 30
4.1.2 表面活性劑HDA的濃度變化對晶體形態之影響 33
4.1.3 反應溫度對晶體形態之影響 36
4.1.4 反應時間對晶體形態之影響 37
4.2 以HDA/TOPO為表面活性劑合成硫化銦奈米晶體與其結構鑑定 41
4.2.1 不同HDA/TOPO的濃度比對晶體粒徑之影響 42
4.2.2 反應溫度與時間對晶體粒徑之影響 50
4.3 表面活性劑對晶體表面影響之探討 58
4.4 硫化銦薄膜光電極的表面形態與其光電特性的探討 63
第五章 結論與未來展望 70
5.1 結論 70
5.2 未來展望 70
參考文獻 71

圖目錄
圖1、以高溫有機金屬法合成出各種不同形狀的硒化鎘奈米晶體 (a) 點狀 (b)四足狀(c)水滴狀 (d)柱狀 (e)筆狀 (f)松樹狀....... 2
圖2、微胞形成之示意圖 (a)微胞 (b)逆微胞。藉由改變表面活性劑組成以改變微胞形狀之硫化鎘奈米晶體 (c)點狀 (d)滴狀.......... 3
圖3、溶劑熱法合成硫化鎘奈米晶體 (a)柱狀 (b)點狀 (c)線狀...... 4
圖4、(a)成核過程中,自由能變化與粒子大小之關係圖 (b)成長速率、粒子大小與單體濃度之關係圖.... 6
圖5、(a)選擇性吸附模式之示意圖 (b、c)單體效應模式之示意圖.... 8
圖6、(a)奈米粒子轉換成奈米柱之中間狀態,由 (b)3.4 nm (c)5.4 nm之奈米粒子所形成的奈米柱.... 9
圖7、溶劑配位分子模板機制之示意圖...........10
圖8、超音波法合成硫化銦粒子之電子顯微鏡圖....13
圖9、微波法合成硫化銦粒子之電子顯微鏡圖 (a、b)在水中反應 (c、d)在甲醇中反應...... 13
圖10、(a、b)氣膠輔助氣相沉積法 (c、d)硫化電化學沉積薄膜合成硫化銦之柱狀粒子之電子顯微鏡圖.... 14
圖11、溶劑法以 (a)硫醇分子 (b)十六烷基胺為穩定劑合成硫化銦奈米粒子之電子顯微鏡圖....15
圖12、溶劑法以油酰胺作為穩定劑合成硫化銦奈米粒子 (a)63 nm之六角形硫化銦奈米粒子 (b、c)硫化銦奈米粒子自我組裝之TEM圖及示意圖.....16
圖13、溶劑法以乙醯丙酮銦和二硫化物為前驅物合成硫化銦奈米粒子 (a)柱狀硫化銦奈米粒子之TEM圖 (b)循環安培法之結果圖.....16
圖14、水熱法合成硫化銦粉體之電子顯微鏡圖.....17
圖15、溶劑熱法合成硫化銦之粉體之電子顯微鏡圖.......22
圖16、電化學沉積硫化銦於 (a)鈦基材 (b)金基材之光電流-電壓曲線圖..... 23
圖17、以旋轉塗佈法將硫化銦塗佈於 (a)TiO2 (b)ZnO (c)ZnS (d)In2O3之光暗電流-電壓曲線圖..... 24
圖18、(a)硫化銦/In2O3 (b)硫化銦/ZnO 光電化學電池之光電流-電壓曲線圖..... 24
圖19、水熱反應器系統..... 27
圖20、十六烷基胺(hexadecylamine)之結構圖......30
圖21、sample 1之TEM圖與粒徑分布圖.....31
圖22、sample 2之TEM圖與粒徑分布圖.....32
圖23、sample 3之TEM圖與粒徑分布圖.....32
圖24、sample 1 ~ 3之XRD圖.....32
圖25、sample 4之TEM圖與sample 4 ~ 6之XRD圖.....35
圖26、sample 5之TEM圖與粒徑分布圖.....35
圖27、sample 6之TEM圖與粒徑分布圖.....35
圖28、反應溫度對晶體粒徑影響之TEM圖 (a)120 (b)150 (c)180 ℃.....37
圖29、反應溫度為150 ℃,不同反應時間之XRD圖.....38
圖30、反應時間(a) 2小時(b) 6小時(c) 12小時(d) 24小時 對晶體粒徑影響之TEM(左)與粒徑分布圖(右),反應溫度為150 ℃.....39
圖31、反應時間(a) 2小時(b) 6小時(c) 12小時(d) 24小時 對晶體粒徑影響之TEM圖,反應溫度為180 ℃.....40
圖32、反應溫度為180 ℃,不同反應時間之XRD圖.....41
圖33、三正辛基氧膦(tri-n-octylphosphine oxide)之結構圖.....41
圖34、(a)不同HDA/TOPO濃度比之XRD圖 (b)六角狀硫化銦奈米晶體之TEM與選區電子繞射圖.....44
圖35、不同HDA/TOPO的濃度比(a)1.5/1.5 (b)2/1 (c)2.5/1 (d)0.5/2.5 (e) 0.75/0.75之TEM(左)與粒徑分布圖(右).....45
圖36、不同HDA/TOPO的濃度比(a)1.5/0.5 (b)1.5/3 (c)2.5/4.5之TEM圖,(d)帶狀硫化銦晶體之選區電子繞射圖.....47
圖37、不同HDA/TOPO的濃度比(a)3/1.5 (b)3/3 (c)3/6之TEM圖.....47
圖38、不同HDA/TOPO的濃度比之XRD圖,固定HDA濃度為(a)1.5 (b)3 mmol.....48
圖39、(a)立方晶系結構之幾何圖形,以{111}為基底之 (b)六角形 (c)三角形 (d)帶狀 硫化銦晶體.....49
圖40、不同反應時間之XRD圖(HDA/TOPO = 1.5/1.5 mmol).....51
圖41、在HDA/TOPO = 1.5/1.5 mmol之反應系統下,反應時間為 (a)1 (b)2 (c)6 (d)12 小時之TEM圖(左)與粒徑分布圖(右).....52
圖42、在HDA/TOPO = 1.5/1.5 mmol之反應系統下,反應溫度為(a)120 (b)150 (c)210 ℃ 之TEM圖(左)、粒徑分布圖(右)與(d)XRD圖.....53
圖43、硫化銦晶體粒徑對 (a)反應時間與溫度 (b)反應速率 之關係圖.....54
圖44、在HDA/TOPO = 1.5/3 mmol之反應系統,以180℃反應(a)1 (b)2 (c)6 (d)24 小時,(e)以210℃反應24小時 之TEM圖與其(f) XRD圖.....57
圖45、TOPO、HDA、HDA/In2S3和HDA/TOPO/In2S3之FTIR光譜圖.....59
圖46、以HDA(虛線)或HDA+TOPO(實線)為表面活性劑所合成的硫化銦晶體之TGA圖.....60
圖47、以硫化銦晶體粒徑為939與54 nm製備薄膜與粉體之XRD圖.....61
圖48、(a)以滴落塗佈製備不同粒徑的硫化銦薄膜 (b)HDA、HDA-硫化銦晶體、HDA+InCl3與InCl3 之XRD圖.....61
圖49、硫化銦晶體於室溫下、燒結至300 ℃與400 ℃之(a)XRD圖 (b)FTIR圖.....62
圖50、硫化銦晶體自我組裝行為之TEM圖(a)垂直 (b)平行排列.....63
圖51、燒結前、燒結至300與400 ℃之硫化銦光電極薄膜之XRD圖.....64
圖52、硫化銦晶體自我組裝後,經燒結成長之示意圖.....65
圖53、以(a、b)68 nm (c、d)435 nm (e、f)帶狀/片狀 之硫化銦晶體所製備的薄膜光電極表面形態之SEM圖,(a、c、e)未燒結 (b、d、f)以400 ℃ 燒結.....66
圖54、以不同晶體粒徑大小製備的薄膜之(a)穿透與反射 (b)吸收光譜.....67
圖55、以不同晶體粒徑大小所製備的薄膜之(αhν)2對光子能量圖.....68
圖56、以粒徑為68 nm所製備的硫化銦薄膜之光電流-電壓圖.....69
圖57、以粒徑為68 nm所製備的硫化銦薄膜之電流-時間關係圖.....69

表目錄
表1、水熱法及溶劑熱法合成硫化銦粉體之文獻整理.....18
表2、改變前驅物濃度之實驗參數.....31
表3、改變表面活性劑濃度之實驗參數.....34
表4、改變反應溫度之實驗參數.....37
表5、改變反應溫度之實驗參數.....38
表6、改變HDA/TOPO的濃度比之實驗參數 44
表7、改變HDA(濃度為1.5或3 mmol)/TOPO的濃度比之實驗參數.....46
表8、不同反應時間與溫度之實驗參數(HDA/TOPO = 1.5/1.5 mmol).....51
表9、不同反應時間與溫度之實驗參數(HDA/TOPO = 1.5/3 mmol).....56
表10、硫化銦薄膜在燒結前後之EDAX分析數據( S/In molar ratio).....65
1. A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J.Phys. Chem., 100, 13226 (1996).
2. M. A. El-Sayed, Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals, Acc. Chem. Res., 37, 326 (2004).
3. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, , M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, Biological applications of colloidal nanocrystals, Nanotechnology, 14, R15 (2003).
4. N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Efficient near-infrared polymer nanocrystal light-emitting diodes., Science, 295, 1506 (2002).
5. M. Kazes, D. Y. Lewis, Y. Ebenstein, , T. Mokari, U. Banin, Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater., 14, 317 (2002).
6. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid nanorod-polymer solar cells., Science, 29, 2425 (2002).
7. C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025 (2005).
8. Y. Yin, A. P. Alivisatos, Colloidal nanocrystal synthesis and the organic–inorganic interface, Nature , 437, 664 (2005).
9. C. B. Murray, C. R. Kagan, M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci., 30, 545 (2000).
10. S. Kumar, T. Nann, Shape control of II–VI semiconductor nanomaterials, small, 2, 316 (2006).
11. C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 115, 8706 (1993).
12. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich. Shape control of CdSe nanocrystals. Nature, 404, 59 (2000).
13. L. Manna, E. C. Scher, A. P. Alivisatos, Synthesis of soluble and processable rod-, arrow-,teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc., 122, 12700 (2000).
14. L. Manna, D. J. Millirion, A. Meisel, E. C. Scher, A. P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, Nat. Mater., 2, 382 (2003).
15. Z. A. Peng, X. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc., 123, 183 (2001).
16. W. W. Yu, X. Peng, Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents:Tunable reactivity of monomers, Angew. Chem. Int. Ed., 41, 2368 (2002).
17. L. Qu, Z. A. Peng, X. Peng, Alternative routes toward high quality CdSe nanocrystals, Nano Lett., 1, 333, (2001).
18. B. Simmons, S. Li, V. John, G. L. McPherson, A. Bose, W. Zhou, J. He, Morphology of CdS nanocrystals synthesized in a mixed surfactant system, Nano Lett. 2, 263 (2002).
19. K. Tang, Y. Qian, J. Zeng, X. Yang, Solvothermal route to semiconductor nanowires, Adv. Mater.,15, 448 (2003).
20. X. Peng, J. Wickham, A. P. Alivisatos, Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:'focusing' of size distributions, J. Am. Chem. Soc., 120, 5343 (1998).
21. J. W. Mullin, Crystallization, 4th ed., Butterworth Heinemann: Oxford, UK, pp.217 (2001).
22. X. Peng, Mechanisms of the shape-control and shape-evolution of colloidal semiconductor nanocrystals, Adv. Mater., 15, 459 (2003).
23. Z. A. Peng, X. Peng, Mechanisms of the shape evolution of CdSe Nanocrystals, J. Am. Chem. Soc., 123, 1389 (2001).
24. Z. Tang, N. A. Kotov, M. Giersig, Spontaneous organization of single CdTe nanoparticles into luminescent nanowires, Science, 297, 237 (2002).
25. Y. Li, H. Liao, Y. Ding, Y. Qian, L. Yang, G. Zhou, Nonaqueous synthesis of CdS nanorod semiconductor, Chem. Mater., 10, 2301 (1998).
26. Z. Deng, L. Li, Y. Li, Novel inorganic organic-layered structures: crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E = S, Se, Te) nanorods in ethylenediamine, Inorganic Chemistry, 42, 2331 (2003).
27. J. Herrero, J. Ortega, n-Type In2S3 thin films prepared by gas chalcogenization of metallic electroplated indium :photoelectrochemical characterization, J. Sol. Energy. Mater., 17, 357 (1988).
28. R. Diehl, R. Nitsche, Vapour growth of three In2S3 modifications by iodine transport, J. Crystal Growth, 28, 306 (1975).
29. W. Rehwald, G. Harbeke, On the conduction mechanism in single crystal β-indium sulfide In2S3, J. Phys. Chem. Solids, 26, 1309 (1965).
30. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, D. Lincot, High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD), Prog. Photovoltaics,11, 437 (2003).
31. Y. He, D. Li, G. Xiao, W. Chen, Y. Chen, M. Sun, H. Huang, X. Fu, A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation, J. Phys. Chem. C, 113, 5254 (2009).
32. S. Avivi, O. Palchik, V. Palchik, M. A. Slifkin, A. M. Weiss, A. Gedanken, Sonochemical synthesis of nanophase indium sulfide, Chem. Mater., , 13, 2195 (2001).
33. S. Gorai, S. Chaudhuri, Sonochemical synthesis and characterization of cage-like β-indium sulphide powder, Mater. Chem. Phys., 89, 332 (2005).
34. S. D. Naik, T. C. Jagadale, S. K. Apte, R. S. Sonawane, M. V. Kulkarni, S. I. Patil, S. B. Ogale, B. B. Kale, Rapid phase-controlled microwave synthesis of nanostructured hierarchical tetragonal and cubic β-In2S3 dandelion flowers, Chem. Phys. Lett., 452, 301 (2008).
35. M. Afzaal, M. A. Malik, P. O’Brien, Indium sulfide nanorods from single-source precursor, Chem. Commun., 334 (2004).
36. A. Datta, S. K. Panda, S. Gorai, D. Ganguli,S. Chaudhuri, Room temperature synthesis of In2S3 micro- and nanorod textured thin films, Mater. Res. Bull., 43, 983 (2008).
37. D. K. Nagesha, X. Liang, A. A. Mamedov, G. Gainer, M. A. Eastman, M. Giersig, J. Song, T. Ni, N. A. Kotov, In2S3 nanocolloids with excitonic emission:In2S3 vs CdS comparative study of optical and structural characteristics, J. Phys. Chem. B, 105, 7490 (2001).
38. H. Zhong, M. Ye, Y. Zhou, C. Yang, Y. Li, Synthesis of In2S3 nanoplates and their self-assembly into superlattices, J. Nanosci. Nanotechnol., 7, 4346 (2007)
39. K. H. Park, K. Jang, and S. U. Son, Synthesis, Optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates, Angew. Chem. Int. Ed., 45, 4608 (2006).
40. M. A. Franzman, R. L. Brutchey, Solution-Phase synthesis of well-defined indium sulfide nanorods, Chem. Mater., 21, 1790 (2009).
41. S. Yu, L. Shu, Y. Qian, Y. Xie, J. Yang, L. Yang, Hydrothermal preparation and characterization of nanocrystalline powder of β-indium sulfide, Mater. Res. Bull., 33, 717 (1998).
42. S. Yu, L. Shu, Y. Wu, J. Yang, Y. Xie, Y. Qian, Organothermal synthesis and characterization of nanocrystalline β-indium sulfide, J. Am. Ceram. Soc., 82, 457 (1999).
43. Y. Xiong, Y. Xie, G. Du, X. Tian, Y. Qian, A novel in situ oxidization-sulfidation growth route via self-purification process to β- In2S3 dendrites, J. Solid State Chem., 166, 336 (2002).
44. Y. Xiong, Y. Xie, G. Du, X. Tian, A solvent-reduction and surface-modification technique to morphology control of tetragonal In2S3 nanocrystals, J. Mater. Chem., 12, 98 (2002).
45. X. Chen, Z. Zhang, X. Zhang, J. Liu, Y. Qian, Single-source approach to the synthesis of In2S3 and In2O3 crystallites and their optical properties, Chem. Phys. Lett, 407, 482 (2005).
46. Y. Liu, H. Xu, Y. Qian, Double-source approach to In2S3 single crystallites and their electrochemical properties, Cryst. Growth Des., 6, 1304 (2006).
47. P. Gao, Y. Xie, S. Chen, M. Zhou, Micrometre-sized In2S3 half-shells by a new dynamic soft template route:properties and applications, nanotechnology, 17, 320 (2006).
48. X. Cao, L. Gu, L. Zhuge, W. Qian, C. Zhao, X. Lan, W. Sheng, D. Yao, Template-free preparation and characterization of hollow indium sulfide nanospheres, Colloid Surf. A-Physicochem. Eng. Asp., 297, 183 (2007).
49. P. Zhao, T. Huang, K. Huang, Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes, J. Phys. Chem. C, 111, 12890 (2007).
50. A. Datta, S. K. Panda, D. Ganguli, P. Mishra, S. Chaudhuri, In2S3 micropompons and their conversion to In2O3 nanobipyramids:simple synthesis approaches and characterization, Cryst. Growth Des., 7, 163 (2007).
51. Y. Liu, M. Zhang, Y. Gao, R. Zhang, Y. Qian, Synthesis and optical properties of cubic In2S3 hollow nanospheres, Mater. Chem. Phys., 101, 362 (2007).
52. L. Chen, Z. Zhang, W. Wang, Self-assembled porous 3d flowerlike β- In2S3 structures:synthesis, characterization, and optical properties, J. Phys. Chem. C, 112, 4117 (2008).
53. Y. Xing, H. Zhang, S. Song, J. Feng, Y. Lei, L. Zhao, M. Lia, Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures, Chem. Commun., 1476 (2008).
54. W. Du, J. Zhu, S. Li, X. Qian, Ultrathin β-In2S3 nanobelts: shape-controlled synthesis and optical and photocatalytic properties, Cryst. Growth Des., 8, 2130 (2008).
55. L. Liu, H. Liu, H. Kou, Y. Wang, Z. Zhou, M. Ren, M. Ge, X. He, Morphology control of β- In2S3 from chrysanthemum-like microspheres to hollow microspheres: synthesis and electrochemical properties, Cryst. Growth Des., 9, 113 (2009).
56. N. Barreau, Indium sulfide and relatives in the world of photovoltaics, Solar Energy, 83, 363 (2009).
57. J. Herrero, J. Ortega, n-type In2S3 thin films prepared by gas chalcogenization of metallic electroplated indium:photoelectrochemical characrerization, Solar Energy Materials, 17, 357 (1988).
58. N. R. de Tacconi, K. Rajeshwar, Electrosynthesis of indium sulfide on sulfur-modified polycrystalline gold electrodes, J. Electroanal. Chem., 444, 7 (1998).
59. Y. Yasaki, N. Sonoyama, T. Sakata, Semiconductor sensitization of colloidal In2S3 on wide gap semiconductors, J. Electroanal. Chem., 469, 116 (1999).
60. P. M. Sirimanne, Y. Yasaki, N. Sonoyama, T. Sakata, A comparative study of semiconductor sensitization by micro-crystals of indium sulfide on various porous wide band gap semiconductor substrates, Mater. Chem. Phys., 78, 234 (2002).
61. K. Hara, K. Sayama, H. Arakawa., Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes, Sol. Energy Mater. Sol. Cells, 62, 441 (2000).
62. A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Lux-Steine, Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells, phys. stat. sol. (RRL), 2, 172 (2008).
63. V. K. Pecharsky, P. Y. Zavalij, Fundamentals of powder diffraction and structural characterization of materials, Springer Verlag, pp.172 (2005).
64. N. Pradhan, D. Reifsnyder, R. Xie, J. Aldana, X. Peng, Surface ligand dynamics in growth of nanocrystals, J. Am. Chem. Soc., 129, 9500 (2007).
65. E. E. Foos, J. Wilkinson, A. J. Mäkinen, N. J. Watkins, Z. H. Kafafi, J. P. Long, Synthesis and surface composition study of cdse nanoclusters prepared using solvent systems containing primary, secondary, and tertiary amines, Chem. Mater., 18 , 2886 (2006).
66. Z. A. Peng, X. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth, J. Am. Chem. Soc., 124, 3343 (2002).
67. O. I. Micic, J. R. Sprague, C. J. Curtis, K. M. Jones, J. L Machol, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, N. Peyghambarian, Synthesis and characterization of InP, GaP, and GaInP2 quantum dots, J. Phys. Chem., 99 ,7754 (1995).
68. A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, Synthesis of size-selected, surface-passivated InP nanocrystals, J. Phys. Chem., 100, 7212 (1996).
69. D. Battaglia, X. Peng, Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent, Nano Lett., 2, 1027 (2002).
70. S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carrol, Monopod, bipod, tripod, and tetrapod gold nanocrystals, J. Am. Chem. Soc., 125, 16186 (2003).
71. T. Sugimoto, Preparation of monodispersed colloidal particles, Adv. Colloid Interface Sci., 28. 65, (1987)
72. J. Tang, G. Konstantatos, S. Hinds, S. Myrskog, A. G. Pattantyus-Abraham, J. Clifford, E. H. Sargent, Heavy-Metal-Free solution-processed nanoparticle-based photodetectors: doping of intrinsic vacancies enables engineering of sensitivity and speed, ACS Nano, 3 , 331 (2009).
73. H. Günzler, H. Gremlich, M. Blumich, IR spectroscopy : an introduction, Weinheim : Wiley-VCH , pp. 229 (2002).
74. V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, Synthesis of hcp-Co nanodisks, J. Am. Chem. Soc., 124, 12874 (2002).
75. M. A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode tungsten trioxide, J. Appl. Phys., 48, 1914, (1977).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top