|
1. A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J.Phys. Chem., 100, 13226 (1996). 2. M. A. El-Sayed, Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals, Acc. Chem. Res., 37, 326 (2004). 3. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, , M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, Biological applications of colloidal nanocrystals, Nanotechnology, 14, R15 (2003). 4. N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Efficient near-infrared polymer nanocrystal light-emitting diodes., Science, 295, 1506 (2002). 5. M. Kazes, D. Y. Lewis, Y. Ebenstein, , T. Mokari, U. Banin, Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater., 14, 317 (2002). 6. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid nanorod-polymer solar cells., Science, 29, 2425 (2002). 7. C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025 (2005). 8. Y. Yin, A. P. Alivisatos, Colloidal nanocrystal synthesis and the organic–inorganic interface, Nature , 437, 664 (2005). 9. C. B. Murray, C. R. Kagan, M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci., 30, 545 (2000). 10. S. Kumar, T. Nann, Shape control of II–VI semiconductor nanomaterials, small, 2, 316 (2006). 11. C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 115, 8706 (1993). 12. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich. Shape control of CdSe nanocrystals. Nature, 404, 59 (2000). 13. L. Manna, E. C. Scher, A. P. Alivisatos, Synthesis of soluble and processable rod-, arrow-,teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc., 122, 12700 (2000). 14. L. Manna, D. J. Millirion, A. Meisel, E. C. Scher, A. P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, Nat. Mater., 2, 382 (2003). 15. Z. A. Peng, X. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc., 123, 183 (2001). 16. W. W. Yu, X. Peng, Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents:Tunable reactivity of monomers, Angew. Chem. Int. Ed., 41, 2368 (2002). 17. L. Qu, Z. A. Peng, X. Peng, Alternative routes toward high quality CdSe nanocrystals, Nano Lett., 1, 333, (2001). 18. B. Simmons, S. Li, V. John, G. L. McPherson, A. Bose, W. Zhou, J. He, Morphology of CdS nanocrystals synthesized in a mixed surfactant system, Nano Lett. 2, 263 (2002). 19. K. Tang, Y. Qian, J. Zeng, X. Yang, Solvothermal route to semiconductor nanowires, Adv. Mater.,15, 448 (2003). 20. X. Peng, J. Wickham, A. P. Alivisatos, Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:'focusing' of size distributions, J. Am. Chem. Soc., 120, 5343 (1998). 21. J. W. Mullin, Crystallization, 4th ed., Butterworth Heinemann: Oxford, UK, pp.217 (2001). 22. X. Peng, Mechanisms of the shape-control and shape-evolution of colloidal semiconductor nanocrystals, Adv. Mater., 15, 459 (2003). 23. Z. A. Peng, X. Peng, Mechanisms of the shape evolution of CdSe Nanocrystals, J. Am. Chem. Soc., 123, 1389 (2001). 24. Z. Tang, N. A. Kotov, M. Giersig, Spontaneous organization of single CdTe nanoparticles into luminescent nanowires, Science, 297, 237 (2002). 25. Y. Li, H. Liao, Y. Ding, Y. Qian, L. Yang, G. Zhou, Nonaqueous synthesis of CdS nanorod semiconductor, Chem. Mater., 10, 2301 (1998). 26. Z. Deng, L. Li, Y. Li, Novel inorganic organic-layered structures: crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E = S, Se, Te) nanorods in ethylenediamine, Inorganic Chemistry, 42, 2331 (2003). 27. J. Herrero, J. Ortega, n-Type In2S3 thin films prepared by gas chalcogenization of metallic electroplated indium :photoelectrochemical characterization, J. Sol. Energy. Mater., 17, 357 (1988). 28. R. Diehl, R. Nitsche, Vapour growth of three In2S3 modifications by iodine transport, J. Crystal Growth, 28, 306 (1975). 29. W. Rehwald, G. Harbeke, On the conduction mechanism in single crystal β-indium sulfide In2S3, J. Phys. Chem. Solids, 26, 1309 (1965). 30. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, D. Lincot, High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD), Prog. Photovoltaics,11, 437 (2003). 31. Y. He, D. Li, G. Xiao, W. Chen, Y. Chen, M. Sun, H. Huang, X. Fu, A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation, J. Phys. Chem. C, 113, 5254 (2009). 32. S. Avivi, O. Palchik, V. Palchik, M. A. Slifkin, A. M. Weiss, A. Gedanken, Sonochemical synthesis of nanophase indium sulfide, Chem. Mater., , 13, 2195 (2001). 33. S. Gorai, S. Chaudhuri, Sonochemical synthesis and characterization of cage-like β-indium sulphide powder, Mater. Chem. Phys., 89, 332 (2005). 34. S. D. Naik, T. C. Jagadale, S. K. Apte, R. S. Sonawane, M. V. Kulkarni, S. I. Patil, S. B. Ogale, B. B. Kale, Rapid phase-controlled microwave synthesis of nanostructured hierarchical tetragonal and cubic β-In2S3 dandelion flowers, Chem. Phys. Lett., 452, 301 (2008). 35. M. Afzaal, M. A. Malik, P. O’Brien, Indium sulfide nanorods from single-source precursor, Chem. Commun., 334 (2004). 36. A. Datta, S. K. Panda, S. Gorai, D. Ganguli,S. Chaudhuri, Room temperature synthesis of In2S3 micro- and nanorod textured thin films, Mater. Res. Bull., 43, 983 (2008). 37. D. K. Nagesha, X. Liang, A. A. Mamedov, G. Gainer, M. A. Eastman, M. Giersig, J. Song, T. Ni, N. A. Kotov, In2S3 nanocolloids with excitonic emission:In2S3 vs CdS comparative study of optical and structural characteristics, J. Phys. Chem. B, 105, 7490 (2001). 38. H. Zhong, M. Ye, Y. Zhou, C. Yang, Y. Li, Synthesis of In2S3 nanoplates and their self-assembly into superlattices, J. Nanosci. Nanotechnol., 7, 4346 (2007) 39. K. H. Park, K. Jang, and S. U. Son, Synthesis, Optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates, Angew. Chem. Int. Ed., 45, 4608 (2006). 40. M. A. Franzman, R. L. Brutchey, Solution-Phase synthesis of well-defined indium sulfide nanorods, Chem. Mater., 21, 1790 (2009). 41. S. Yu, L. Shu, Y. Qian, Y. Xie, J. Yang, L. Yang, Hydrothermal preparation and characterization of nanocrystalline powder of β-indium sulfide, Mater. Res. Bull., 33, 717 (1998). 42. S. Yu, L. Shu, Y. Wu, J. Yang, Y. Xie, Y. Qian, Organothermal synthesis and characterization of nanocrystalline β-indium sulfide, J. Am. Ceram. Soc., 82, 457 (1999). 43. Y. Xiong, Y. Xie, G. Du, X. Tian, Y. Qian, A novel in situ oxidization-sulfidation growth route via self-purification process to β- In2S3 dendrites, J. Solid State Chem., 166, 336 (2002). 44. Y. Xiong, Y. Xie, G. Du, X. Tian, A solvent-reduction and surface-modification technique to morphology control of tetragonal In2S3 nanocrystals, J. Mater. Chem., 12, 98 (2002). 45. X. Chen, Z. Zhang, X. Zhang, J. Liu, Y. Qian, Single-source approach to the synthesis of In2S3 and In2O3 crystallites and their optical properties, Chem. Phys. Lett, 407, 482 (2005). 46. Y. Liu, H. Xu, Y. Qian, Double-source approach to In2S3 single crystallites and their electrochemical properties, Cryst. Growth Des., 6, 1304 (2006). 47. P. Gao, Y. Xie, S. Chen, M. Zhou, Micrometre-sized In2S3 half-shells by a new dynamic soft template route:properties and applications, nanotechnology, 17, 320 (2006). 48. X. Cao, L. Gu, L. Zhuge, W. Qian, C. Zhao, X. Lan, W. Sheng, D. Yao, Template-free preparation and characterization of hollow indium sulfide nanospheres, Colloid Surf. A-Physicochem. Eng. Asp., 297, 183 (2007). 49. P. Zhao, T. Huang, K. Huang, Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes, J. Phys. Chem. C, 111, 12890 (2007). 50. A. Datta, S. K. Panda, D. Ganguli, P. Mishra, S. Chaudhuri, In2S3 micropompons and their conversion to In2O3 nanobipyramids:simple synthesis approaches and characterization, Cryst. Growth Des., 7, 163 (2007). 51. Y. Liu, M. Zhang, Y. Gao, R. Zhang, Y. Qian, Synthesis and optical properties of cubic In2S3 hollow nanospheres, Mater. Chem. Phys., 101, 362 (2007). 52. L. Chen, Z. Zhang, W. Wang, Self-assembled porous 3d flowerlike β- In2S3 structures:synthesis, characterization, and optical properties, J. Phys. Chem. C, 112, 4117 (2008). 53. Y. Xing, H. Zhang, S. Song, J. Feng, Y. Lei, L. Zhao, M. Lia, Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures, Chem. Commun., 1476 (2008). 54. W. Du, J. Zhu, S. Li, X. Qian, Ultrathin β-In2S3 nanobelts: shape-controlled synthesis and optical and photocatalytic properties, Cryst. Growth Des., 8, 2130 (2008). 55. L. Liu, H. Liu, H. Kou, Y. Wang, Z. Zhou, M. Ren, M. Ge, X. He, Morphology control of β- In2S3 from chrysanthemum-like microspheres to hollow microspheres: synthesis and electrochemical properties, Cryst. Growth Des., 9, 113 (2009). 56. N. Barreau, Indium sulfide and relatives in the world of photovoltaics, Solar Energy, 83, 363 (2009). 57. J. Herrero, J. Ortega, n-type In2S3 thin films prepared by gas chalcogenization of metallic electroplated indium:photoelectrochemical characrerization, Solar Energy Materials, 17, 357 (1988). 58. N. R. de Tacconi, K. Rajeshwar, Electrosynthesis of indium sulfide on sulfur-modified polycrystalline gold electrodes, J. Electroanal. Chem., 444, 7 (1998). 59. Y. Yasaki, N. Sonoyama, T. Sakata, Semiconductor sensitization of colloidal In2S3 on wide gap semiconductors, J. Electroanal. Chem., 469, 116 (1999). 60. P. M. Sirimanne, Y. Yasaki, N. Sonoyama, T. Sakata, A comparative study of semiconductor sensitization by micro-crystals of indium sulfide on various porous wide band gap semiconductor substrates, Mater. Chem. Phys., 78, 234 (2002). 61. K. Hara, K. Sayama, H. Arakawa., Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes, Sol. Energy Mater. Sol. Cells, 62, 441 (2000). 62. A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Lux-Steine, Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells, phys. stat. sol. (RRL), 2, 172 (2008). 63. V. K. Pecharsky, P. Y. Zavalij, Fundamentals of powder diffraction and structural characterization of materials, Springer Verlag, pp.172 (2005). 64. N. Pradhan, D. Reifsnyder, R. Xie, J. Aldana, X. Peng, Surface ligand dynamics in growth of nanocrystals, J. Am. Chem. Soc., 129, 9500 (2007). 65. E. E. Foos, J. Wilkinson, A. J. Mäkinen, N. J. Watkins, Z. H. Kafafi, J. P. Long, Synthesis and surface composition study of cdse nanoclusters prepared using solvent systems containing primary, secondary, and tertiary amines, Chem. Mater., 18 , 2886 (2006). 66. Z. A. Peng, X. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth, J. Am. Chem. Soc., 124, 3343 (2002). 67. O. I. Micic, J. R. Sprague, C. J. Curtis, K. M. Jones, J. L Machol, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, N. Peyghambarian, Synthesis and characterization of InP, GaP, and GaInP2 quantum dots, J. Phys. Chem., 99 ,7754 (1995). 68. A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, Synthesis of size-selected, surface-passivated InP nanocrystals, J. Phys. Chem., 100, 7212 (1996). 69. D. Battaglia, X. Peng, Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent, Nano Lett., 2, 1027 (2002). 70. S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carrol, Monopod, bipod, tripod, and tetrapod gold nanocrystals, J. Am. Chem. Soc., 125, 16186 (2003). 71. T. Sugimoto, Preparation of monodispersed colloidal particles, Adv. Colloid Interface Sci., 28. 65, (1987) 72. J. Tang, G. Konstantatos, S. Hinds, S. Myrskog, A. G. Pattantyus-Abraham, J. Clifford, E. H. Sargent, Heavy-Metal-Free solution-processed nanoparticle-based photodetectors: doping of intrinsic vacancies enables engineering of sensitivity and speed, ACS Nano, 3 , 331 (2009). 73. H. Günzler, H. Gremlich, M. Blumich, IR spectroscopy : an introduction, Weinheim : Wiley-VCH , pp. 229 (2002). 74. V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, Synthesis of hcp-Co nanodisks, J. Am. Chem. Soc., 124, 12874 (2002). 75. M. A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode tungsten trioxide, J. Appl. Phys., 48, 1914, (1977).
|