1.劉希平,《台北縣固定污染源VOC濃度調查及空污費徵收方式研究計畫》,台北縣環保局,民國88年。
2.行政院環保署空氣品質改善維護資料網,http://air.epa.gov.tw/Public/emission.aspx
3.蘇世昌,〈溫溼度協同效應對四氯乙烯光催化分解反應影響之探 討〉,國立高雄第一科技大學,碩士論文,民國91年。4.Benitez, J., “Process Engineering and Design for Air Pollution Control,” PTR Prentice-Hall Inc., New Jersey, 466, (1993).
5.工業局,〈石化工業因應揮發性有機污染物管制規範之對策研究〉,經濟部工業局專案研究計劃,民國83年 。
6.蔡德鴻、尚秀貞,〈揮發性有機物管制及新處理技術〉,《化工技術》,第16卷,第3期,第170-183頁,民國97年。7.行政院勞工委員會,〈危害物質危害數據資料GHS-SDS〉,民國96年。
8.中華民國環保法規資料中心網站,固定污染源空氣污染物排放標準http://law.epa.gov.tw/zh-tw/laws/631743675.html#。
9.張志成,〈固體吸附技術於工業空調除濕淨化之應用〉,《中國冷凍空調雜誌》,第65-75頁,民國75年。10.顧洋,〈VOC處理技術之簡介與比較〉,《經濟部工業局84年度VOC管制趨勢與處理技術》,台北,第27-35頁,民國84年。
11.王卿昧,〈奈米孔隙吸附劑吸附VOCs之吸附平衡研究〉,私立中原大學,碩士論文,民國92年。12.申永順,〈以高級氧化程序處理揮發性有機污染物反應行為及光反應器設計之研究〉,國立台灣科技大學,博士論文,第12-26頁,民國87年 。13.劉國棟,〈VOC 管制趨勢發展〉,《工業污染防制》,第48期,第15-31頁,(1993) 。
14.王文,〈以光纖反應器進行紫外線光觸媒程序分解氣相中苯之研究〉,國立臺灣科技大學,博士論文,民國92年。
15.林有銘,〈觸媒環境大氣淨化應用技術〉,《化工技術》,第14卷,第4期,第86-102頁,民國95年。
16.Ryer, A., Light Measurement Handbook, International Light Co. Ltd. Newburyport,MA., USA., (1997).
17.Legan, R. W., “Ultraviolet Light Takes on CPI Roles,” Chemical Engineering., January, 95, (1982).
18.Zepp R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste,” Environ Sci. & Technol., 22(3), 256, (1988).
19.胡興中,《觸媒原理與應用》,高立圖書出版,民國87年。
20.吳孟奇、洪勝富、連振析、龔正,《半導體元件》,台北,東華書局初版,民國90年。
21.呂宗昕,《圖解奈米科技與光觸媒》,台北,商周出版,民國92年。
22.Stumm, W., Chemistry of the Solid-Water Interface, John Wiley and Sons, New York,USA., (1992).
23.Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol.20, 69-95, (1995).
24.江立偉,〈以紫外線/光觸媒程序處理空氣中苯、甲苯及二甲苯氣體之反應行為〉,國立台灣科技大學,碩士論文,民國87年。25.黃建智,〈奈米二氧化鈦光觸媒之電漿改質及其對VOCs分解反應機制之研究〉,私立中國文化大學,碩士論文,民國93年。26.Thomas, W. J., and Crittenden, B., Adsorption technology and design, Butterworth-Heinemann, (1998).
27.Carp, O., Huisman, C. L., and Reller, A. Prog., “Photoinduced reactivity of titanium dioxide,” Solid State Chem., 32-33. (2004)。
28.洪楨琳,〈溫度與濕度對光催化分解苯蒸氣之影響研究〉,國立中山大學,碩士論文,民國90年。29.Chen, J. Q., Wang, D., Zhu, M. X., and Gao, C. J., “Photocatalytic degradation of dimethoate using nanosized TiO2 powder,” Desalination, 207, 87 (2007).
30.Saquib, M., Tariq, M. A., Haque, M. M., and Muneer, M., “Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process,” Journal of Environmental Management, 88, 300 (2008).
31.Amrita, P., Simo O. P., Liya, E. Y. and Madhumita, B. R., “Photocatalytic Inactivation of Airborne Bacteria in a Continuous-Flow Reactor Abstract,” Ind. Eng. Chem. Res., 47 (20), 7580–7585, (2008).
32.Sekiguchi, K., Yamamoto, K., and K. Sakamoto, “Photocatalytic degradation of gaseous toluene in an ultrasonic mist containing TiO2 particles,” Catalysis Communications, 9, 281-285, (2008).
33.Li, X. Z., Hou, M. F., Li, F. B., and Chua, H., “Photocatalytic Oxidation of Methyl Mercaptan in Foul Gas for Odor Control,” Ind. Eng. Chem. Res., 45 (2), 487–494, (2006).
34.Xiao, Q., Zhang, J., C. Xiao, Zhichun, S., and Xiaoke, T., “Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension,” Solar Energy, 82, 706 (2008).
35. Sharma, M. V., Kumari, V. D., Subrahmanyam, M., “Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light,” Chemosphere, 72, 644, (2008).
36.Mai, F. D., Lu, C. S., Wu, C. W., Huang, C. H., Chen, J. Y., and Chen, C. C., “Mechanisms of photocatalytic egradation of Victoria Blue R using nano- TiO2,” Separation and Purification Technology, (2008).
37.Zhang, P., and Liu, J., “Photocatalytic Degradation of Trace Hexane in the Gas Phase with and without Ozone Addition: Kinetic Study,” Journal of Photochemistry and Photobiology A: Chemistry, 167, 87 (2004).
38.Jiang, Q. Q., Zhang, C. X., Zhichun, S., and Xiaoke, T., “Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension,” Solar Energy, 82, 706, (2008).
39.Peterson, M. W., Turner, J. A., and Nozik, A. J., “Mechanistic Studies of the Photocatalytic Behavior of TiO2 Particles in Photoelactrochemical Slurry Cell and Relevance to photodetoxification Reactions,” J. Phys. Chem., 95, 221, (1991).
40.吳政峰,洪崇軒,袁中新,蕭德福,〈二氯化鈦光觸媒改質及四氯乙烯去除率及礦化率之探討〉,《空氣污染控制技術研討會論文集》,第268-272頁,民國89年。
41.Dong, Y. H., Bai, Z. P., Liu, R., and Zhu, T., “Preparation of fibrous TiO2 photocatalyst and its optimization towards the decomposition of indoor ammonia under illumination,” Catalysis Today, 126 , 320–327, (2007).
42.Endalkachew, S. D. and Venu, G. D., “Vapor phase oxidation of dimethyl sulfide with ozone over V2O5/TiO2 catalyst,” Applied Catalysis B: Environmental, 84, 408-419, (2008).
43.李宛樺、洪崇軒、袁中新、彭依偉、郭柏成、羅卓卿、王大昌、李家偉,〈導電效應對塗覆光觸媒玻璃纖維濾網之丙酮分解研究〉,《中華民國環境工程學會空氣汙染控制技術研討會》,第257頁,民國97年。
44.Chun, H., Dong, S., Ya, X., Xihai, Z ., and Li, X., “Comparison of catalytic activity of two platinised TiO2 films towards the oxidation of organic pollutants,” Chemosphere, 63, 183-191, (2006).
45.Jacoby, A. W., , Blake, D. M., Fennell, J. A., Boulter, J. E., and Vargo, L. M, “Hetergeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” J. A&WMA, 46, 891-898, (1996).
46.Guillard, C., Baldassare, D., Duchamp, C., Ghazzal, M.N., and Daniele, S., “Photocatalytic degradation and mineralization of a malodorous compound (dimethyl disulfide) using a continuous flow reactor,” Catalysis Today, 122, 160-167, (2007).
47.Pal, A., Pehkonen, S. O., Yu, L. E., and Ray, M. B., “Photocatalytic Inactivation of Airborne Bacteria in a Continuous-Flow Reactor Abstract,” Ind. Eng. Chem. Res., , 47 (20), 7580–7585, (2008).
48.Sleiman, M., Ferronato, C. and Chovelon, J. M., “Photocatalytic Removal of Pesticide Dichlorvos from Indoor Air: A Study of Reaction Parameters, Intermediates and Mineralization,” Environ. Sci. Technol., 42 (8), 3018–3024, (2008).
49.Ma Y., Qiu, J. B., Cao, Y. A., Guan, Z. S., and Yao, J. N., “Photocatalytic activity of TiO2 films grown on different substrates,” Chemosphere, 44, 1087-1092, (2001).
50.蔡裕榮,〈以溶膠凝膠法製備透明導電氧化物薄膜的探討〉,國立中正大學,碩士論文,民國91年。51.Obee, T.N., and Brown, R.T., “TiO2 photocatalysis for indoor air applications-effectsof humidity and trace contaminant levels on the oxidation rates of formaldehyde,toluene, and 1,3-butadiene,” Environmental Science & Technology, 29, 1223-1231, (1995).
52.Choi, W., Ko, J.Y., Park, H., and Chung, J.S., “Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone,” Applied Catalysis B – Environmental 31, 209–220, (2001).
53.Dibble, L.A., and Raupp, G.B., “Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams, ” Environmental Science & Technology 26, 492–495, (1992).
54.Mo, J.H., Zhang, Y.P., Yang, R., and Xu, Q.J., “Influence of fins on formaldehyde removal in annular photocatalytic reactors, ” Building and Environment 43, 238–245, (2008).
55.Ma, H., Zhang, X., Ma, Q., and Wang, B., “Electrochemical catalytic treatment of phenol wastewater,” Journal of Hazardous Materials, 165, 475–480, (2009).
56.Ollis, D. F., “Photoreactors for Purification and Decomposition of A ir,” The 1stInternational Conference on TiO2 Photocatalytic and Treatment of Water and Air, London, Ontario, Canada, 481-494, (1992).