(3.235.245.219) 您好!臺灣時間:2021/05/07 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉琳雅
研究生(外文):Lin Ya Yeh
論文名稱:PEO與PVP摻合體之結晶行為及相形態探討
論文名稱(外文):Crystallization and Phase Morphology of PEO and PVP Blends
指導教授:邱方遒
指導教授(外文):F. C. Chiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:159
中文關鍵詞:聚氧化乙烯聚乙烯啶摻合體熱性質相形態相容性
外文關鍵詞:Poly(ethylene oxide)Poly(vinyl pyridine)Polymer BlendsMiscibilityMorphologyThermal Properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:523
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用共溶劑鑄造法製備聚氧化乙烯(PEO)/聚乙烯啶(PVP)摻合體,探討以不同比例摻混所形成摻合系統之特定性質。研究中利用示差掃瞄熱卡計(DSC) 及偏光顯微鏡(POM),探討摻合體之結晶行為、熔融行為、相形態及相容性。
由DSC實驗得知,對於PEO20/P2VP5 摻合體系統而言,PEO結晶溫度及熔融溫度,隨著P2VP5 含量增加而往低溫偏移的趨勢,由此可推論該系統為相容系統;並進一步由POM實驗證實,此摻合體系統於熔融狀態呈現均一相,但若將溫度提升至110℃,則會出現相分離現象,可初步推論,此摻合體之相行為屬於LCST系統。另外,亦發現隨著P2VP5 含量增加,PEO晶體成長速率變慢;同時,晶體形態較不完美。
對於PEO20/P2VP37.5系統而言,加入P2VP37.5 後,PEO之結晶溫度及熔融溫度皆隨著P2VP37.5 的加入而些微的下降;但P2VP37.5 含量增加,PEO之結晶溫度及熔融溫度並沒有明顯的變化。進一步由POM實驗證實,此摻合體系統於熔融狀態呈現相分離,由上述結果可判斷P2VP 分子量較小者,與PEO相容性較好,並影響PEO結晶與熔融行為較嚴重。
此外,對於PEO20/ P4VP60 摻合體系統而言,PEO之結晶溫度及熔融溫度,隨著P4VP60 含量增加而只呈現些微的下降;且由DSC測得此摻合體系統呈現單一玻璃轉移溫度(Tg),但因測得之Tg 與原PEO20及P4VP60 之Tg的有些偏離;同時由POM觀察到,於熔融狀態時,此系統呈現相分離現象,可推論此系統為部分相容。
另外,此研究將PEO19-b-P2VP6 -76/24 block copolymer 與PEO20/P2VP5-75/25 blend 相似系統進行比較。由DSC所有結果與現象可說明PEO19-b-P2VP6 -76/24 block copolymer 相容性比PEO20/P2VP5-75/25 blend 好;藉由POM觀察結果得知在blend 系統中,PEO 晶體成長速率較快;而block copolymer則較慢。由此亦可得知,block copolymer影響PEO 結晶動力較嚴重。
Blends of poly(ethylene oxide) PEO and poly(vinyl pyridine) PVP With different PVP’s were prepared through a solution mixing technique. The thermal properties, crystalline morphology and miscibility of the blends were investigated by differential scanning calorimeter (DSC) and polarized optical microscope (POM).
For the PEO20/P2VP5 blend system: DSC results showed a depression in PEO’s Tc , and Tm◦ as the composition of P2VP5 increased. The results indicated a certain miscibility between PEO20 and P2VP5 . The crystallisation rate of PEO also depended on the blend composition: the more P2VP5 in the blend, the slower the crystallization of PEO. POM results showed occurrence of phase separation for the blend system at high temperature showing a LCST behavior.
For the PEO20/P2VP37.5 blend system: DSC results showed a slight depression in PEO’s Tc , and Tm◦ as the composition of P2VP37.5 increased. The results indicated partial miscibility between PEO20 and P2VP37.5 in the molten state depending on the blend composition. The POM micrographs showed phase separation of the blends at ca. 80℃.
The crystallization, melting behavior and phase morphology of PEO/P2VP and PEO-b-P2VP block copolymer were studied and compared in the there, too.
目錄
封面
指導教授推薦書
論文口試委員會審定書
長庚大學授權書
誌 謝 VII
摘 要 V
Abstract VIIII
目錄 VIIIIIII
表目錄 XI
圖目錄 XIIII
第一章 前言 1
第二章 相關原理及文獻回顧 3
2-1 高分子摻合體 3
2-1.1 摻合體之相容性 3
2-2 高分子結晶特性 9
2-2.1 非結晶性/結晶性高分子 9
2-2.2 高分子結晶形成之條件 10
2-2.3 結晶對高分子性質的影響 11
2-2.4 影響結晶行為的因素 12
2-2.5 摻合體的結晶行為 14
2-2.5.1 結晶化機制 14
2-2.5.1-1 成核理論 15
2-2.5.1-2 晶體成長 16
2-2.5.2 結晶動力學 17
2-2.5.2-1 結晶速率測定 19
2-2.5.2-2 結晶度 19
2-2.5.2-3 Avrami 方程式 20
2-2.6 結晶相形態 22
2-3 混合物的相分離及其機制 23
2-3.1 相分離 23
2-4 團鏈共聚物 25
2-4.1 團聯共聚合物之理論 26
2-4.2 團聯共聚合物摻合體之形態 27
2-4.3 團聯共聚合物摻合體之微相分離形態 28
2-5 聚氧化乙烯-(poly(ethylene oxide),PEO) 29
2-6 聚乙烯啶-(poly(vinyl pyridine),PVP) 31
第三章 實驗 41
3-1 材料 41
3-2 儀器設備 42
3-3 儀器原理 43
3-4 實驗步驟 45
3-4.1 樣品製備 45
3-4.2 性質測試 46
第四章 結果與討論 51
4-1 PEO20/P2VP5系統 51
4-1.1 非等溫結晶行為 51
4-1.2 非等溫結晶後之熔融行為 51
4-1.3 等溫結晶行為 52
4-1.4 結晶動力分析 52
4-1.5 等溫結晶後之熔融行為 54
4-1.6 相容性 54
4-1.6 相形態 55
4-1.6-1 熔融相形態 55
4-1.6-2 結晶相形態 56
4-1.6-3 等溫結晶之晶體相形態 56
4-2 PEO20/P2VP37.5系統 57
4-2.1 非等溫結晶行為 57
4-2.2 非等溫結晶後之熔融行為 58
4-2.3 等溫結晶行為 58
4-2.4 結晶動力分析 59
4-2.5 等溫結晶後之熔融行為 60
4-2.6 相容性 61
4-2.7 相形態 61
4-2.7-1 熔融相形態 61
4-2.7-2 結晶相形態 62
4-2.7-3 等溫結晶之晶體相形態 62
4-3 PEO20/P4VP60系統 64
4-3.1 非等溫結晶行為 64
4-3.2 非等溫結晶後之熔融行為 64
4-3.3 等溫結晶行為 65
4-3.4 結晶動力分析 65
4-3.5 等溫結晶後之熔融行為 66
4-3.6 相容性 67
4-3.7 相形態 67
4-3.7-1 熔融相形態 67
4-3.7-2 結晶相形態 67
4-3.7-3 等溫結晶之晶體相形態 68
4-4 PEO20/P2VP5- 75/25 blend vs. PEO19-b-P2VP6- 76/24 block compolymer系統 69
4-4.1 非等溫結晶行為 69
4-4.2 非等溫結晶後之熔融行為 70
4-4.3 等溫結晶行為 70
4-4.4 結晶動力分析 71
4-4.5 等溫結晶後之熔融行為 72
4-4.6 相容性 73
4-4.7 相形態 73
4-4.7-1 熔融相形態 73
4-4.7-2 結晶相形態 74
4-4.7-3 等溫結晶之晶體相形態 74
4-5 PEO20/P2VP37.5- 33/67 blend vs. PEO20-b-P2VP40- 33/67 block compolymer系統 76
4-5.1 非等溫結晶行為 76
4-5.2 非等溫結晶後之熔融行為 76
4-5.3 相形態 77
4-5.3-1 熔融相形態 77
4-5.3-2 結晶相形態 77
4-6 PEO20/P2VP5 blend 系統vs. PEO20/ P2VP37.5 blend系統比較 78
4-6.1 非等溫結晶行為與結晶後之熔融行為 78
4-6.2 等溫結晶行為與結晶後之熔融行為 78
4-6.3 結晶動力分析 79
4-6.4 相容性 80
第五章 結論 142
參考文獻 144




表目錄
Table 2-1. Avrami 指數n 的物理意義。 32
Table 3-1. Samples designation and formulations of PEO20/P2VP5 system……..50
Table 3-2. Samples designation and formulations of PEO20/P2VP37.5 system. 50
Table 3-3. Samples designation and formulations of PEO20/P4VP60 system. 50
Table 4-1. Apparent DSC thermal properties of PEO20/P2VP5 blends system......82
Table 4-2. Apparent DSC thermal properties of PEO20/P2VP37.5 83
Table 4-3. Apparent DSC thermal properties of PEO20/P4VP60 blends system. 84
Table 4-4. The results of the isothermail crystallization experiments for PEO20/P2VP5 blends system. 85
Table 4-5.The results of the isothermail crystallization experiments for 86
Table 4-6. The results of the isothermail crystallization experiments for 86
Table 4-7. Representative Avrami exponent n and rate constant ln k of PEO20/P2VP5 blends system. 87
Table 4-8. Representative Avrami exponent n and rate constant ln k of PEO20/P2VP37.5 blends system. 88
Table 4-9. Representative Avrami exponent n and rate constant ln k of PEO20/P4VP60 blends system. 88


















圖目錄
Fig 2-1. Phase diagram for a polymer blend illustrating an upper critical 33
Fig 2-2. Fringed micelle model of the crystalline-amorphous structure of 34
Fig 2-3. Schematic two-dimensional representations of models of the fold surface in polymer lamellae: (a) sharp folds, (b)“switchboard” model, (c) loose loops with adjacent reentry, (d)a combination of several features. 34
Fig 2-4. Folded-chain lamellae model. 35
Fig 2-5. Fringed lamellae model. 35
Fig 2-6. The models of spherulite 36
Fig 2-7. Coarsening during the latter stages of spinodal phase 37
Fig 2-8. Spinodal & Binodal curve in a phase diagram. 37
Fig 2-9. Crystal morphology of crystalline/ amorphous blend. 38
Fig 2-10. Block copolymer 排列方式。 39
Fig 2-11. Block copolymer 進行相分離。 39
Fig 2-12. 高分子團聯共聚合物因體積分率不同形成不同微結構。 40
Fig 2-13.團聯式共聚合物摻合體之相容情形 40

Fig 4-1. DSC cooling thermograms of different rates: 89
Fig 4-2. DSC cooling thermograms of PEO20/P4VP60 blends system at different rates: (a) 5℃/min; (b) 10℃/min and (c) 40℃/min cooling rate. 90
Fig 4-3. DSC cooling thermograms of PEO20/P2VP5-75/25 vs. PEO19-b-P2VP6 -76/24 at different rates: (a) 5℃/min; (b) 10℃/min and (c) 40℃/min cooling rate 91
Fig4-4. DSC cooling thermograms of PEO20/P2VP37.5-33/67 vs. PEO20-b-P2VP40-33/67 at different rates: (a) 5℃/min; (b) 10℃/min and (c) 40℃/min cooling rate 92
Fig 4-5. DSC cooling thermograms of PEO20/P2VP5-90/10 vs. PEO20/P2VP37.5-90/10 at different rates: (a) 5℃/min; (b) 10℃/min and (c) 40℃/min cooling rate 93
Fig 4-6. DSC cooling thermograms of PEO20/P2VP5-75/25 vs. PEO20/P2VP37.5-75/25 at different rates: (a) 5℃/min; (b) 10℃/min and (c) 40℃/min cooling rate 94
Fig 4-7. DSC cooling thermograms of PEO20/P2VP5-50/50 v.s PEO20/P2VP37.5-50/50 at different rates: (a) 5℃/min; (b) 10℃/min and (c) 40℃/min cooling rate 95
Fig 4-8. DSC heating thermograms of PEO20/P2VP5 and PEO20/P2VP37.5 blends: (a)(b) 5℃/min-cooled; (c)(d)10℃/min-cooled and ( e)(f)40℃/min-cooled 96
Fig 4-9. DSC heating thermograms of PEO20/P4VP60 blends: (a) 5℃/min-cooled; (b) 10℃/min-cooled and (c) 40℃/min-cooled 97
Fig 4-10. DSC heating thermograms of PEO20/P2VP5-75/25 vs. PEO19-b-P2VP6 -76/24: (a) 5℃/min-cooled; (b) 10℃/min-cooled and (c) 40℃/min-cooled 98
Fig 4-11. DSC heating thermograms of PEO20/P2VP37.5-33/67 vs. PEO20-b-P2VP40-33/67: (a) 5℃/min-cooled; (b) 10℃/min-cooled and(c) 40℃/min-cool ed 100
Fig 4-12. DSC heating thermograms of PEO20/P2VP5-90/10 vs. PEO20/P2VP37.5-90/10: (a) 5℃/min-cooled; (b) 10℃/min-cooled and (c) 40℃/min-cooled 101
Fig 4-13. DSC heating thermograms of PEO20/P2VP5-90/10 vs. PEO20/P2VP37.5-90/10: (a) 5℃/min-cooled; (b) 10℃/min-cooled and (c) 40℃/min-cooled…………………………………………………………102
Fig 4-14. DSC heating thermograms of PEO20/P2VP5-50/50 vs. PEO20/P2VP37.5-50/50: (a) 5℃/min-cooled; (b) 10℃/min-cooled and (c) 40℃/min-cooled 103
Fig 4-15. DSC isothermal crystallization of : (a) PEO20/ P2VP5-100/0; (b) PEO20/ P2VP5-90/10; (c) PEO20/ P2VP5-75/25;(d) PEO20/ P2VP5-50/50 and (e)PEO19-b-P2VP6 block copolymer at different Tc’s 104
Fig 4-16. DSC isothermal crystallization of : (a) PEO20/ P2VP37.5-90/10 and (b) PEO20/ P2VP37.5-75/25 at different Tc’s. 105
Fig 4-17. DSC isothermal crystallization of : (a) PEO20/ P4VP60-90/10; 106
Fig 4-18. Relative crystallinity as a function of crystallization time for PEO20/P2VP5 blends: (a) 100/0; (b) 90/10; (c) 75/25; (d) 50/50 and PEO19-b-P2VP6 (e) 74/26 at different temperature. 107
Fig 4-19. Relative crystallinity as a function of crystallization time for 107
Fig 4-20. Relative crystallinity as a function of crystallization time for crystallization of PEO20/P4VP60 blends: (a) 90/10; (b) 75/25 and (c) 50/50 at different temperature. 108
Fig 4-21. t1/2 as a Tc for (a) PEO20/P2VP5 blends system and 109
Fig 4-22. t1/2 as a Tc for (a) PEO20/ P2VP37.5 blends system and 110
Fig 4-23. t1/2 as a Tc for (a) PEO20/ P2VP20- 90/10 vs. PEO20/ P2VP37.5- 90/10 blend system and (b) PEO20/ P2VP20- 75/25 vs. PEO20/ P2VP37.5- 75/25 blend system 111
Fig 4-24. DSC heating traces after the isothermal crystallization of PEO20/ P2VP5 blends system: (a) 100/0; (b) 90/10; (c) 75/25; (d) 50/50 and PEO19-b-P2VP6 (e) 74/26 at different Tc’s. 112
Fig 4-25. DSC heating traces after the isothermal crystallization of PEO20/ P2VP37.5 blends system: (a) 90/10 and (b) 75/25 at different Tc’s. 113
Fig 4-26. DSC heating traces after the isothermal crystallization of PEO20/ P4VP60 blends system (a) 90/10; (b) 75/25 and (c) 50/50 at different Tc’s. 114
Fig 4-27. Hoffman-Weeks plots of different component in (a) PEO/P2VP5 blends system and(b) PEO20/ P2VP5-75/25 vs. PEO19-b-P2VP6-76/24…………................................................................115
Fig 4-28. Hoffman-Weeks plots of different component in (a) PEO20/P2VP37.5 blends system and (b) PEO20/P4VP60 blends system 116
Fig 4-29. Plot of ln[-ln(1-Xc)] versus ln(t) for PEO20/P2VP5 blends system: (a)100/0; (b) 90/10; (c) 75/25; (d) 50/50 and (e) PEO19-b-P2VP6 block copolymer 117
Fig 4-30. Plot of ln[-ln(1-Xc)] versus ln(t) for PEO20/P2VP37.5 blends system: (a) 90/10 and (b) 75/25 118
Fig 4-31. Plot of ln[-ln(1-Xc)] versus ln(t) for PEO20/P4VP60 blends system: (a) 90/10; (b) 75/25 and (c)50/50 119
Fig 4-32. Melt state of POM images for PEO20/P2VP5 blends with different compositions: (a) 100/0; (b) 90/10; (c) 75/25 and (d) 50/50 at different temperatures 120
Fig 4-33. Melt state of POM images for PEO20/P2VP5 blends with different compositions: (e) 40/60 ; (f) 20/80 and (g) 0/100 at different temperatures 121
Fig 4-34. POM crystallized morphology of PEO20/P2VP5 blends with different compositions after 10℃/min cooled ((a) (c) (e) (g) (e))and air quenched ((b) (d) (f) (h) (j)) from the melt. 122
Fig 4-35. Melt state of POM images for PEO20/P2VP37.5 blends with different compositions: (a) 90/10; (b) 75/25; (c) 50/50 and (d) 33/67 at different temperatures. 123
Fig 4-36. Melt state of POM images for PEO20/P2VP37.5 blends with different compositions: (e) 20/80 and (f) 0/100 at different temperatures. 124
Fig 4-37. POM crystallized morphology of PEO20/P2VP37.5 blends with different compositions after 10℃/min cooled ((a) (c) (e) (g) (e))and air quenched ((b) (d) (f) (h) (j)) from the melt. 125
Fig 4-38. Melt state of POM images for PEO20/P4VP60 blends with different compositions: (a) 90/10; (b) 75/25; (c) 50/50; (d) 33/67; (e) 20/80 and (f) 0/100 at different temperatures. 126
Fig 4-39. POM crystallized morphology of PEO20/P4VP60 blends with different compositions after 10℃/min cooled ((a) (c) (e) (g) (e))and air quenched ((b) (d) (f) (h) (j)) from the melt. 127
Fig 4-40. Melt state of POM images for (a) PEO20/P2VP5- 75/25 blend vs. 128
Fig 4-41. POM crystallized morphology of (a) and (b) PEO20/P2VP5- 75/25 blend vs. (c) and (d)PEO19-b-P2VP6- 74/26 block after 10℃/min cooled and air quenched from the melt. 12930
Fig 4-42. Melt state of POM images for (a) PEO20/P2VP37.5 - 33/67 blend vs. PEO20-b-P2VP40- 33/67 block at different temperatures. 130
Fig 4-43. POM crystallized morphology of (a) and (b) PEO20/P2VP37.5- 33/67 blend v.s (c) and (d)PEO20-b-P2VP40- 33/67 block after 10℃/min cooled and air quenched from the melt. 131
Fig 4-44. Spherulite morphologies of PEO20/P2VP5 blends system: (a) 100/0; (b) 90/10 and (c) 75/25 melt-crystallized at 46~52℃ 132
Fig 4-45. Spherulite morphologies of PEO20/P2VP5 blends system: (a) 90/10; (b) 75/25 and (c) 50/50 melt-crystallized at 34~42℃ 133
Fig 4-46. Spherulite morphologies of (a) PEO20/P2VP5- 75/25 blend and (b) PEO19-b-P2VP6- 74/26 block melt-crystallized at 36~50℃. 134
Fig 4-47. Spherulite morphologies of PEO20/P2VP37.5 blends system: (a) 100/0; (b) 90/10 and (c) 75/25 melt-crystallized at 46~50℃ 135
Fig 4-48. Spherulite morphologies of PEO20/P4VP60 blends system: (a) 100/0; (b) 90/10; (c) 75/25 and (d) 50/50 melt-crystallized at 46~54℃ 136
Fig 4-49. Spherulite radius of (a) PEO20/P2VP5 -90/10 and (b) PEO19-b-P2VP6- 74/26 block copolymer as a function of crystallzation time at different Tc.. 137
Fig 4-50. Spherulite radius of (a) PEO20/P2VP37.5 -90/10 and (c) 75/25 blends as a
function of crystallzation time at different Tc 138
Fig 4-51. Log spheruleite growth rates versus Tc for (a) PEO20/P2VP5 blends system and (b) PEO20/P2VP37.5 blends system. 139
Fig 4-52. Log spheruleite growth rates versus Tc for PEO20/P2VP5 blends vs. PEO20/P2VP37.5 blends (a) 90/10 (b) 75/25. 140
Fig 4-53. Log spheruleite growth rates versus Tc for PEO20/P2VP5 blends vs. PEO19-b-P2VP6 block copolymer. 141
1. 邱方遒、丁銘煌,“高分子摻合體與研究案例”,化工技術,第12卷第3期,129 (2004).
2. M. Gordon and J. S. Taylor, J. Appl. Chem., 2,493 (1952).
3. T. G. Fox, Bull. Am. Phys. Soc., 1, 123 (1956).
4. J.D. Hoffman and J.J. Weeks, Journal of Research in Natl. Bur. Std. A. Phys. Chem., 66A(1), 13 (1962).
5. T. Nishi and T. T. Wang, Macromolecules., 8, 909 (1975).
6. P. J. Flory, “Principles of Polymer Chemistry ” ,Cornell University Press: Ithaca (1953).
7. 李育德、顏文意、莊祖徨,“聚合物物性”,高立圖書有限公司,(1996).
8. 杜逸虹,“聚合體學”,三民書局,(1995).
9. 金日光、華幼卿,“高分子物理”,北京市,(1991).
10. B. Wunderlich , “Macromolecular Physics”, vol. 2, Academic
Press , New York (1976).
11. S. L. Rosen, “Fundamental Principles of Polymeric Materials”, John Wiley & Sons, Inc. (1993).
12. 李明德,“對位性聚苯乙烯摻合體之相容性與熱性質探討”,長庚大
學,碩士論文(2002).
13. M. L. Di Lorenzo, Prog. Polym. Sci., 28, 663 (2003).
14. S. Z. D. Cheng and B. Wunderlich, J. Polym. Sci., B, Polym. Phys., 24, 577 (1986).
15. M. Avrami, J. Chem. Phys., 7, 1103 (1939).
16. M. Avrami, J. Chem. Phys., 8, 212 (1940).
17. M. Avrami, J. Chem. Phys., 9, 177 (1941).
18. S. W. Lee and M. Cakmak, J. Macromol. Sci. Phys., 37, 501 (1998).
19. L. M. Olabishi, Robeson and M. T. Shaw, “Polymer-Polymer Miscibility”, Academic Press Inc., New York (1979).
20. D. Debier, A. M. Jonas and R. Legras, J. Polym. Sci., B, Polym. Phys., 36, 2197 (1998).
21. K. J. Jeon and R. J. Roe, Macromolecules., 27, 2439 (1994).
22. T. Hashimoto, K. Yamasaki, S. Koizumi and H. Hasegawa,
Macromolecules., 26, 2895 (1993).
23. T. Hashimoto, H. Tanaka and H. Hasegawa, Macromolecules., 23,
4378 (1990).
24. Y. Matsushita, N. Torikai, Y. Mogi and I. Noda, Macromolecules.,
26, 6346 (1993).
25. H. Tanaka, H. Hasegawa and T. Hashimoto, Macromolecules., 24,
240 (1991).
26. C. Prahsarn and A. M. Jamieson, Polymer., 38, 1273 (1997).
27. S. Nojima, H. Nkano, Y. Takahashi and T. Ashida, Polymer., 35,
3479 (1994).
28. S. Nojima, K. Kato, S. Yamamoto and T .Ashida, Macromolecules.,
25, 2237 (1992).
29. S. Nojima, H. Nkano, Y. Takahashi and Ashida T, Polymer Journal.,
27, 673 (1995).
30. S. Nojima, H. Nkano and T. Ashida, Polymer., 34, 4168 (1993).
31. S. Nojima, K. Hashizume , Rohadi A and Sasaki S, Polymer., 38,
2711 (1997).
32. S. Nojima, N. Kikuchi, A. Rohadi, S. Tanimoto and S. Sasaki,
Macromolecules., 32, 3727 (1999).
33. S. Nojima, H.Tanaka, A. Rohadi and S. Sasaki, Polymer., 39, 1727
(1998).
34. A. J. Ryan, I. W. Hamley, W. Bras and F. S. Bates, Macromolecules.,
28, 3860 (1995).
35. P. Rangarajan, R. A. Register, D. H. Adamson; L.J. Fetters, W. Bras,
S. Naylor and A. J. Ryan, Macromolecules., 28, 1422 (1995).
36. G. Jloudas and C. Tsitsilianis, Macromolecules., 30, 4381 (1997).
37. I. W. Hamley, J. P. A. Fairclough, F. S. Bates and A. J. Ryan,
Polymer., 39, 1429 (1998).
38. R. Unger, D. Beyer and E. Donth, Polymer., 32, 3305 (1991).
39. C. Cai, L. Wang and C. M. Dong, J. Polym. Sci., Polym. Chem. Ed.,
44, 2034 (2006).
40. E. Martuscelli, M. Ganetti, L. Vicini and A. Seves, Polymer., 23,
331 (1982).
41. E. J. Moskala, D. F. Varnell and M. M. Coleman, Macromolecules.,
26, 228 (1996).
42. J. P. Spatz, A. Roescher and M. Moller, Adv. Mater., 8, 337 (1996).
43. M. Templin, A. Franck, A. D. Chesne, H. Leist, Y. Zhang, R. Ulrich,
V. Schadler and U. Wiesner, Science., 278, 1795 (1997).
44. A. C. Finnefrock, R. Ulrich, G. E. S. Toombes, S. M. Gruner and U.
Wiesner, J. Am. Chem. Soc., 121, 9852 (1999).
45. L. M. Bronstein, D. M. Chernyshov, E. Vorontsov, G. I.Timofeeva,
L. V. Dubrovina, P. M. Valetsky, S. Kazakov and A. R. Khokhlov,
J. Phys. Chem. B., 105, 9077 (2001).
46. P. Matejicek, J. Humpolickova, K. Procha´zka, Z. Tuzar, M.
Spirkova, M. Hof and S. E. Webber, J. Phys. Chem. B., 105, 9077 (2003).
47. M. Stepanek, K. Podhajecka, E. Tesarova, K. Prochazka, Z. Tuzar
and W. Brown, Langmuir., 17, 4240 (2001).
48. L. M. Bronstein, D. M. Chernyshov, G. I. Timofeeva, L.V.
Dubrovina, P. M. Valetsky, E. S. Obolonkova and A. R. Khokhlov, Langmuir., 16, 3626 (2000).
49. 李立鼎,“聚對位乙烯基酚(PVPh)與芳香族聚酯類或含兩性鏈段之
團聯共聚物其摻合系統相容性與作用力之分析”,成功大學,博士論文(2006).
50. X. Li, R. Xing, Y. Zhang, Y. Han and L. An, Polymer., 45, 1637
(2004).
51. D. S. Homminga, B. Goderis, V. B. F. Mathot and G. Groeninckx,
Polymer., 47, 1630 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔