|
文獻探討 1. Podschun, R. and Ullmann, U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4): 589-603. 2. Yi-Pang Chuang, Chi-Tai Fang, Shau-Yan Lai, Shan-Chwen Chang, Jin-Town Wang. Genetic Determinants of Capsular Serotype K1 of Klebsiella Pneumoniae Causing Primary Pyogenic Liver Abscess. Journal of Infectious Disease . 2006;193:645-54 3. Greer E. Kaufman, Janet Yother. CcpA-depedent and independent control of beta-glactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream PTS-encoding operon. Journal Bacteriology. 2007;doi:10.1128 4. Laakso, D. H., M. K. Homonylo, S. J. Wilmot, and C. Whitfield. 1988. Transfer and expression of the genetic determinants for O and K antigen synthesis in Escherichia coli O9:K(A)30 and Klebsiella sp. O1:K20 in Escherichia coli K12. Can. J. Microbiol. 34:987-992 5. Matsumoto, H., and T. Tazaki. 1971. Genetic mapping of aro, pyl, and pur markers in Klebsiella pneumoniae. Jpn. J. Microbiol. 15:11-20 6. Drummelsmith, J., and Whitfield, C. 2000. Translocation of group 1 capsular polysaccharide to the surface of Escherichia coli requires a multimeric comple in the outer membrane. EMBO J 19:57-66 7. Wugeditsch, T., Paiment, A., Hocking, J., Drummelsmith, J., Forrester, C., and Whitfield, C. 2001. Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J Biol Chem 276:2361-2371 8. Clarke, D.J., Joyce, S.A., Toutain, C.M., Jacq, A., and Holland, I.B. 2002. Genetic analysis of the RcsC sensor kinase from Escherichia coli K-12. J Bavteriol 184:1204-1208 9. Gottesman, S. 1995. Regulation of capsule synthesis : modification of the two- component paradigm by an accessory unstable regulator. In: Two-component Signal Transduction. Hoch, J.A., and Silhavy, T.J. (eds). Washington, DC: American Society for Microbiology Press, pp. 253-262 10. Stout, V. 1994. Regulation of capsule synthesis includes interaction of the RcsC/RcsB regulatory pair. Res Microbiol 145:389-392 11. Takeda, S., Fujisawa, Y., Matsubara, M., Aiba, H., and Mizuno, T.2001. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC->YojN->RcsB signaling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40:440-450 12. Arakawa, Y., Wacharotayankun, R., Nagatsuka, T., Ito, H., Kato, N., and Ohta, M. 1995.Genomic organization of the Klebsiella pneumoniae cps region rewponsible fpr serotype K2 capsular polysaccharides synthesis in the virulent strain Chedid. J Bacteriol 177:1788-1796 13. Rahn, A., Drummelsmith, J., and Whitfield, C. 1999. Conserved organization in the cps gene cluster for epression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 181: 2307-2313 14. Stout, V., A. Torres-Cabassa, M. R. Maurizi, D. Gutnick, and S. Gottesman. 1991. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. 173:1738-1747 15. Yi-Chyi Lai, Hawei-Ling Peng, and Hwan-You Chang. 2003. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcription level. J Bacteriol 185:788-800 16. Kolb, A., S. Busby, H. Buc, S. Garges, and S. Adhya. 1993. Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62:749-795 17. Zheng, D., C. Constantinidou, J. L. Hobman, and S.D. Minchin. 2004. Identification of the CRP regulon using in vitro transcriptional profiling. Nucleic Acids Res. 32:5874-5893 18. Heyduk, T., and J. C. Lee. 1989. Escherichia coli cAMP receptor protein : evidence for three protein conformational states with different promoter binding affinities. Biochemistry 28:6914-6924 19. Mckay, D. B., and T. A.Steitz. 1981. Structure of catabolite gene activator protein at 2.9À resolution suggests binding to left-handed B-DNA. Nature 290:744-749 20. Won, H. S., T. W. Lee, S. H. Park, and B. J. Lee. 2002. Stoichiometry and structural effect of the cyclic nucleotide binding to cyclic AMP receptor protein. J. Biol. Chem. 277:11450-11455 21. Won, H. S., T. W. Yamazaki, T. W. Lee, M. K. Yoon, S. H. Park, Y. Kyogoku, and B. J. Lee. 2000. Structural understanding of the allosteric conformational change of cyclic AMP receptor protein by cyclic AMP binding. Bilchemistry 39:13953-13962 22. Ebright, R. H., Y. W. Ebright, and A. Gunasekera. 1989. Consensus DNA site for the Escherichia coli catabolite gene protein(CAP): CAP exhibits a 450-gold higher affinity for the consensus DNA sites than for the E. coli lac DNA site. Nucleic Acids Res. 17:10295-10305 23. Botsford, J. L., and J. G. Harman. 1992. Cyclic AMP in prokaryotes. Microbiol. Rev. 56:100-122 24. Sung Kuk Lee and Jay D. Keasling. 2006. Effect of glucose as the sole carbon source on gene expression from the Salmonella prpBCDE promoter in Escherichia coli. 22:1547-1551 25. Yih-Ling Tzeng, John S. Swartley, Yoon K. Miller, Rachel E. Nisbet, Li-Jun Liu, Jay H. Ahn, and David S. Stephens. 2001. Transcription regulation of divergent capsule biosynthesis and transport operon promoters in serogroup B Neisseria meningitides 26. M. Stoecklea, C. Kaechb, A. Trampuzb, W. Zimmerlia. 2008. The role of diabetes mellitus in patientswith bloodstream infections. SWISS MED WKLY 138:512–519 27. Drivas G, Wardle N. 1978. Reticuloendothelial cell dysfunction in diabetes and hyperlipidemia. 27:1533-8 28. Wolf G, Müller N, Busch M, Eidner G, Kloos C, Hunger-Battefeld W, Müller UA. 2009. Diabetic foot syndrome and renal function in type 1 and 2 diabetes mellitus show close association. 29. Boris Görke & Jörg Stülke. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Reviews Microbiology. 6: 613-624 30. Melinda Pitt, Maria-Trinidad Gallegos and Martin Buck. 2000. Single amino acid substitution mutants of Klebsiella pneumoniaeσ54 defective in transcription. Nucleic acids research. 22:4419-4427 31. Siva R. Wigneshwerara, Sergei Nechaev, Konstantin Severinov and Martin Buck. 2002. Beta subunit residues 186-433 and 436-445 are commonly used by Eσ54 and Eσ70 RNA polymerase for open promoter complex formation. J. Mol. Biol. 319:1067-1083
|