跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:史啟君
研究生(外文):Chii Jiun Shih
論文名稱:利用整合性基因體技術探討核仁磷酸蛋白參與在調控基因表現所扮演的角色:以histone基因為例
論文名稱(外文):An integrated functional genomic approach of characterizing the transcriptional role of B23: histone genes as a target
指導教授:翁一鳴譚賢明
指導教授(外文):Benjamin Yat-Ming YungBertrand Chin-Ming Tan
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:58
中文關鍵詞:核仁磷酸蛋白抑制基因調控
外文關鍵詞:B23histonerepressor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
核仁磷酸蛋白 (NPM,B23) 是一個位於核仁的多功能蛋白,參與在核糖體生成、細胞凋亡、分化與細胞週期進行時的調控。近年來,B23被發現與許多轉錄因子結合而共同調節影響下游基因的表現,但是對於B23參與在基因表現的機制與角色仍有待研究。在此,我們利用整合性基因體技術 Microarray 和 ChIP-on-chip 來廣泛搜尋可能受到B23調控的基因,並更進一步利用實驗來確認基因的表現。利用此整合方法,我們成功找到了八個基因表現可能受到B23 的調控,分別是基因H2AC, H2BK, H2BF, H3G, CFB, NGEF, GNB1和KIF5B,當中針對histone 基因做更深入的研究探討。研究發現在基因上游啟動子處,當B23受到抑制時,屬於histone的活化因子 NPAT 的表現和 histone H4 的乙醯化程度皆增加,代表著此時histone 啟動子活化進而使基因表現增加。在細胞週期進入S phase時,B23 表現下降會增加且延長histone 基因表現,而細胞週期的進行也會受到延遲。代表B23是作為抑制因子來調控 histone 的啟動子並影響到基因的表現並參與細胞週期的調控。而在細胞分化過程中,我們發現B23 也參與在抑制 histone 啟動子的活性,進而使基因表現下降。因此本篇研究中發現到一個新的 histone 抑制因子 – B23,參與調控histone 的轉錄過程。未來將更進一步研究受到B23 抑制的確切機制與探討在生物體上所代表的意義
Nucleophosmin (NPM, B23) is a multifunctional protein that plays crucial role in ribosome biogenesis, cell cycle progression, apoptosis and cell differentiation regulation. In recent years, B23 has been found to interact with many transcription factors to regulate gene transcription. However, the exact role of B23 in the transcription regulation is still unclear. Here, we undertook an integrated functional genomic approach, which combines microarray and ChIP-on-chip analyses, to globally identify putative B23-target genes. Real-time PCR and chromatin precipitation (ChIP) assay were used to further confirm the putative B23-target genes. Through such integration approach, we have so far identified several candidate genes of B23-controlled transcription and chosen one of the candidates - histone genes for further characterization. ChIP assay revealed B23 occupancy of several histone gene promoters and that two markers of histone gene activation, NPAT and histone H4 acetylation, were upregulated in the absence of B23. During S phase, siRNA-mediated knockdown of B23 prolonged the expression of histone genes, transcription of which is normally restricted to early S phase. Therefore B23 may act as a repressor for histone genes and also a regulator of S phase progression. Our findings further indicated that B23 may participate in negatively regulating histone genes expression during cell growth arrest and differentiation. In the future we will focus on elucidating the molecular mechanism underlying B23-mediated regulation of histone genes and investigating its biological relevance.
Table of Contents

Introduction ...……………………………………………….………......1
Materials and Methods …………...…………….……………………... 4
Cell culture ………………………………………………………. 4
Microarray analysis ……………………………………………….4
ChIP-on-chip analysis …………………………………………….4
Cell transfection ………………………………………...………...4
RNA extraction and reverse transcriptase PCR …………………..5
Real-time PCR ……………………………………………………5
Cell cycle synchronization ………………………………………..5
Chromatin immunoprecipitation .…………………………………6
Immunobloting ……………………………………………………7
Oligonucleotide pull-down assay …………………………………7
Silver staining ……………………………………………………..8
Results …………………………………………………………………9
Identification and analysis of the candidate of B23-controlled genes
……………………………..………………………………………9
B23-mediated change of gene expression profile ……….....9
The occupancy of B23 on gene promoter regions ………….9
The link between B23 promoter binding and gene transcription regulation ……………………………………10
Biological role of B23 in histone genes expression regulation ….11
Effect of B23 on histone promoter regions ……………….11
Cell cycle-dependent regulation of histone gene expression ………………………………………….……11
B23-regulated histone gene expression during cell differentiation ……………………………………………..12
The underlying mechanism of B23-mediated histone gene repression ………………………………………………….14
Discussion …………………………………………………………….. 16
References …………………………………………………………… 19
Appendix ……………………………………………………………. 55


Table of Figures and Tables

Figure 1. RNAi-mediated knockdown of B23 expression in HeLa cells..23
Figure 2. Gene ontology analysis of positive genes selected from the microarray analysis ……………………………………………………..24
Figure 3. The integration of ChIP-on-chip and cDNA microarray analyses for identifying B23-targeted genes ……………………………………..28
Figure 4. The confirmation of putative B23-target gene expression …...33
Figure 5. The occupancy of B23 on gene promoter regions ……………35
Figure 6. Downregulation of B23 affects both NPAT binding and histone acetylation on histone promoter regions ………………………………..37
Figure 7. Downregulation of B23 leads to increased histone protein expression ……………………………………………………………… 38
Figure 8. Decreased cell growth rate in HeLa siB23 stable clones …….39
Figure 9. RNAi-mediated down-regulation of B23 delays S phase progression ……………………………………………………………...40
Figure 10. Expression of selected histone pair genes during S phase ….41
Figure 11. Regulation of histone promoters during S phase progression.44
Figure 12. Confirmation of histone H1 and H4 expression during cell differentiation ………………………………………………...…………47
Figure 13. Induced S phase arrest after extending culture in K562 cell...48
Figure 14. Extending culture triggered K562 cell differentiation……….49
Figure 15. Expression of other histone genes in K562………………….50
Figure 16. B23 is linked to the degree of histone H4 acetylation on histone promoter regions………………………………………………..51
Figure 17. Oligonucleotide pull-down assay reveals B23 occupancy on histone promoter regions ………………………………………………..52
Figure 18. Identification of putative histone promoter-associated proteins………………………………………………………………….53
Figure 19: The alteration of associated-proteins profile………………...54
Table 1. cDNA microarray analysis of gene expression in HeLa cells....27
Table 2. Putative B23-target genes ……………………………………..36
Table 3. Cell differentiation-dependent histone H1 and H4 expression is under the control of B23 ………………………………………………..46
1. Borer, R.A., Lehner, C.F., Eppenberger, H.M. and Nigg, E.A. (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell, 56, 379-390.
2. Grisendi, S., Mecucci, C., Falini, B. and Pandolfi, P.P. (2006) Nucleophosmin and cancer. Nat Rev Cancer, 6, 493-505.
3. Ahn, J.Y., Liu, X., Cheng, D., Peng, J., Chan, P.K., Wade, P.A. and Ye, K. (2005) Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell, 18, 435-445.
4. Bertwistle, D., Sugimoto, M. and Sherr, C.J. (2004) Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol, 24, 985-996.
5. Liu, H., Tan, B.C., Tseng, K.H., Chuang, C.P., Yeh, C.W., Chen, K.D., Lee, S.C. and Yung, B.Y. (2007) Nucleophosmin acts as a novel AP2alpha-binding transcriptional corepressor during cell differentiation. EMBO Rep, 8, 394-400.
6. Lin, C.Y., Liang, Y.C. and Yung, B.Y. (2006) Nucleophosmin/B23 regulates transcriptional activation of E2F1 via modulating the promoter binding of NF-kappaB, E2F1 and pRB. Cell Signal, 18, 2041-2048.
7. Weng, J.J. and Yung, B.Y. (2005) Nucleophosmin/B23 regulates PCNA promoter through YY1. Biochem Biophys Res Commun, 335, 826-831.
8. Kondo, T., Minamino, N., Nagamura-Inoue, T., Matsumoto, M., Taniguchi, T. and Tanaka, N. (1997) Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene, 15, 1275-1281.
9. Khorasanizadeh, S. (2004) The nucleosome: from genomic organization to genomic regulation. Cell, 116, 259-272.
10. Meeks-Wagner, D. and Hartwell, L.H. (1986) Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell, 44, 43-52.
11. Marzluff, W.F., Gongidi, P., Woods, K.R., Jin, J. and Maltais, L.J. (2002) The human and mouse replication-dependent histone genes. Genomics, 80, 487-498.
12. Harris, M.E., Bohni, R., Schneiderman, M.H., Ramamurthy, L., Schumperli, D. and Marzluff, W.F. (1991) Regulation of histone mRNA in the unperturbed cell cycle: evidence suggesting control at two posttranscriptional steps. Mol Cell Biol, 11, 2416-2424.
13. Mannironi, C., Bonner, W.M. and Hatch, C.L. (1989) H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3' processing signals. Nucleic Acids Res, 17, 9113-9126.
14. Marzluff, W.F. and Duronio, R.J. (2002) Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr Opin Cell Biol, 14, 692-699.
15. Barcaroli, D., Bongiorno-Borbone, L., Terrinoni, A., Hofmann, T.G., Rossi, M., Knight, R.A., Matera, A.G., Melino, G. and De Laurenzi, V. (2006) FLASH is required for histone transcription and S-phase progression. Proc Natl Acad Sci U S A, 103, 14808-14812.
16. Mitra, P., Xie, R.L., Medina, R., Hovhannisyan, H., Zaidi, S.K., Wei, Y., Harper, J.W., Stein, J.L., van Wijnen, A.J. and Stein, G.S. (2003) Identification of HiNF-P, a key activator of cell cycle-controlled histone H4 genes at the onset of S phase. Mol Cell Biol, 23, 8110-8123.
17. Zhao, J., Kennedy, B.K., Lawrence, B.D., Barbie, D.A., Matera, A.G., Fletcher, J.A. and Harlow, E. (2000) NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev, 14, 2283-2297.
18. Kim, K.Y., Kweon, K.R., Lee, M.S., Kwak, S.T., Kim, K.E., Hwang, B.D. and Lim, K. (1995) Reduced level of octamer binding transcription factor (Oct-1) is correlated with H2B histone gene repression during differentiation of HL-60 cells by all-trans retinoic acid. Biochem Biophys Res Commun, 213, 616-624.
19. Gao, G., Bracken, A.P., Burkard, K., Pasini, D., Classon, M., Attwooll, C., Sagara, M., Imai, T., Helin, K. and Zhao, J. (2003) NPAT expression is regulated by E2F and is essential for cell cycle progression. Mol Cell Biol, 23, 2821-2833.
20. Medina, R., van Wijnen, A.J., Stein, G.S. and Stein, J.L. (2006) The histone gene transcription factor HiNF-P stabilizes its cell cycle regulatory co-activator p220NPAT. Biochemistry, 45, 15915-15920.
21. DeRan, M., Pulvino, M., Greene, E., Su, C. and Zhao, J. (2008) Transcriptional activation of histone genes requires NPAT-dependent recruitment of TRRAP-Tip60 complex to histone promoters during the G1/S phase transition. Mol Cell Biol, 28, 435-447.
22. Stein, G.S., Stein, J.L., Van Wijnen, A.J. and Lian, J.B. (1996) Transcriptional control of cell cycle progression: the histone gene is a paradigm for the G1/S phase and proliferation/differentiation transitions. Cell Biol Int, 20, 41-49.
23. Nelson, D.M., Ye, X., Hall, C., Santos, H., Ma, T., Kao, G.D., Yen, T.J., Harper, J.W. and Adams, P.D. (2002) Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol Cell Biol, 22, 7459-7472.
24. Canavan, R. and Bond, U. (2007) Deletion of the nuclear exosome component RRP6 leads to continued accumulation of the histone mRNA HTB1 in S-phase of the cell cycle in Saccharomyces cerevisiae. Nucleic Acids Res, 35, 6268-6279.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top