(3.230.154.160) 您好!臺灣時間:2021/05/08 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝雨珊
研究生(外文):Yu Shan Hsieh
論文名稱:蜜蜂老化指標之研究
論文名稱(外文):Study on age-related markers in the honey bees (Apis mellifera)
指導教授:徐錦源徐錦源引用關係
指導教授(外文):C. Y. Hsu
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:142
中文關鍵詞:蜜蜂老化相關指標
外文關鍵詞:honeybeeage-relatedmarker
相關次數:
  • 被引用被引用:0
  • 點閱點閱:562
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已知蜜蜂(Apis mellifera)可當作研究老化的模式動物,蜂王的壽命約是工蜂的12倍。本研究以老化指標研究兩者老化過程中的差異。我們使用顯微鏡、生化分析及分生技術研究工蜂與蜂王腹部滋養細胞及脂肪細胞中老化指標之變化。
結果顯示,工蜂與蜂王老化指標相似處為β-半乳糖苷酶、脂質過氧化、蛋白質氧化、過氧化氫酶以及麩光甘肽過氧化酶的表現量隨年紀增加而增加;而SirT1的表現量則相反。端粒酶活性及端粒長度無顯著差異。
工蜂與蜂王老化指標相異處為,在工蜂之超氧陰離子及過氧化氫、超氧歧化酶(MnSOD、CuZnSOD)活性、Catalase表現量隨年齡增加而下降;而FOXO、JNK與MnSOD表現量隨年齡增加而增加。蜂王之脂褐質、JNK、Catalase表現量隨年齡上升無顯著差異。
由上述結果發現在工蜂與蜂王之老化指標表現量在代謝廢物堆積、氧化壓力、抗氧化酵素效率、與代謝相關基因表現相異,這些相異之處,可提供未來進一步研究蜂王長壽之原因,進而提供未來研究延緩老化的基礎。
Honeybees (Apis mellifera) have served as an animal model for the study of aging. The lifespan of queen bees is 12-fold longer than that of worker bees.This study differentiates the differences of age-related molecules between worker bees and queen bees by using histochemical, biochemical, and genetic techniques.
The results showed that senescence-associated -galactosidase, lipid peroxidation, protein oxidation, glutathione peroxidase activity and catalase activity were increased with age, whereas SirT1 expression is decreased with age in worker bees and queen bees. However, telomerase activity and telomere length have no significant difference.
The results also showed that the expression of some age-related molecules was different between worker bees and queen bees. Reactive oxygen species(O2‧- and H2O2), superoxide dismutase activity(MnSOD and Cu/ZnSOD) ,Catalase expression are decreased with age, whereas the expression of FoxO, MnSOD and JNK was increased with age in worker bees. Besides the expression of Lipofuscin granules, JNK and Catalase expression has no significant difference with worker bees, the expression of remainder is reversely proportioned to worker bees in queen bees.
Collectively, some age-related molecules expressed similar tendencies; others did different tendencies between worker bees and queen bees. The different expression (Waste accumulation,ROS level,Antioxidant enzyme efficiency,Gene regulation)of age-related molecules between worker bees and queen bees laid a foundation to further study the mechanism of aging and anti-aging.
目錄
指導教授推薦書 ……………………………………………………i
論文口試委員審定書………………………………………………ii
長庚大學授權書 …………………………………………………iii
誌謝 …………………………………………………………………iv
中文摘要………………………………………………………………v
英文摘要………………………………………………………………vi
目錄 …………………………………………………………………vii
圖表目錄 ……………………………………………………………xiv
第一章 序論 …………………………………………………1
1.1老化研究背景………………………………………………………1
1.2 老化指標物質………………………………………………………2
1.2.1 Lipofuscin granules(脂褐質) …………………………2
1.2.2 Senescence associated β-galactosidase
(SA-β-Gal,SA-β-半乳糖苷酶) ……………………………4
1.3 氧化壓力與抗氧化酵素……………………………………………5
1.3.1 活性氧(reactive oxygen species,ROS)………………5
1.3.2 lipid peroxidation(脂質過氧化)………………………6
1.3.3 protein oxidation(蛋白質氧化) ………………………7
1.3.4超氧歧化酶(Superoxide Dismutase,SOD) ………………8
1.3.5 過氧化氫酶(Catalase)……………………………………9
1.3.6 麩光甘肽過氧化酶(Glutathione peroxidease,GPx)…11
1.4端粒與端粒酶………………………………………………………11
1.4.1 Telomere length(端粒長度) ……………………………11
1.4.2 Telomerase activity(端粒酶活性) ……………………13
1.5參與代謝之訊號傳遞………………………………………………14
1.5.1 SirT1(Sirtuin1) signal…………………………………14
1.5.2 FOXO (Forkhead box o) signal…………………………16
1.5.3 JNK (c-Jun N-termial kinase) …………………………18
1.6模式動物(Animal model)
1.6.1世界各大蜜蜂飼養品系……………………………………19
1.6.2使用義大利蜂為模式動物…………………………………21
1.6.3蜂王…………………………………………………………22
1.6.4蜜蜂腹部細胞………………………………………………26
第二章 論文研究目的 ……………………………………………27
第三章 實驗材料與方法 …………………………………………28
3.1樣品取得……………………………………………………………29
3.2 萃取蛋白質 ………………………………………………………29
3.3 Lipofuscin granules……………………………………………29
3.4 SA-β-gal…………………………………………………………30
3.5 ROS 測定 …………………………………………………………30
3.5.1超氧化物自由基(Superoxide,O2−.)測定 ………………30
3.5.2過氧化氫(Hydrogen peroxide,H2O2)測定………………31
3.6 lipid peroxidation assay………………………………………33
3.7 protein oxidation assay ………………………………………33
3.8 SOD activity assay………………………………………………34
3.9 Catalase activeity assay………………………………………35
3.10 GPx activeity assay……………………………………………35
3.11 Western blotting(西方墨點法) ………………………………36
3.12 TRAP assay (Telomere Repeat Amplification Protocol) …37
3.13 萃取genomic DNA ………………………………………………38
3.14 Southern blotting(南方墨點法) ……………………………39
3.15 統計方法…………………………………………………………39

第四章 實驗結果……………………………………………………40
4.1工蜂部份……………………………………………………………40
4.1.1 脂褐質(lipofuscin granules)分析結果 ……………41
4.1.2β-半乳糖苷酶(SA-β Gal)分析結果 …………………41
4.1.3 超氧陰離子(O2‧-)分析結果 ……………………………41
4.1.4過氧化氫(H2O2)分析結果…………………………………41
4.1.5 脂質過氧化程度(lipid peroxidation) 分析結果 …41
4.1.6 蛋白質氧化程度(protein oxidation) 分析結果……42
4.1.7 過氧化氫酶(Catalase)活性分析結果…………………42
4.1.8麩光甘肽過氧化酶(Glutathione peroxidease,GPx)活性分析結果……………………………………………………42
4.1.9 銅-鋅-超氧歧化酶(copper-zinc superoxide dismutase,
Cu-ZnSOD)活性分析結果…………………………………43
4.1.10 錳-超氧歧化酶(Manganese superoxide dismutase,MnSOD) 活性分析結果………………………43
4.1.11 端粒酶活性(Telomerase activity)分析結果………43
4.1.12 端粒長度(Telomere length) 分析結果 ……………44
4.1.13 Forkhead box-O(FOXO)表現量分析結果………………44
4.1.14 SirT1(Sirtiun 1)表現量分析結果……………………44
4.1.15 JNK(c-Jun N-terminal kinase)表現量分析結果……45
4.1.16 MnSOD表現量分析結果…………………………………46
4.1.17 Catalase表現量分析結果 ……………………………46
4.2蜂王部份……………………………………………………………47
4.2.1脂褐質(lipofuscin granules)分析結果………………47
4.2.2β-半乳糖苷酶(SA-β Gal)分析結果 …………………47
4.2.3 超氧陰離子(O2‧-)分析結果 ……………………………47
4.2.4過氧化氫(H2O2)分析結果…………………………………48
4.2.5 脂質過氧化程度(lipid peroxidation)分析結果……48
4.2.6 蛋白質氧化程度(protein oxidation)分析結果 ……48
4.2.7過氧化氫酶(Catalase)活性分析結果 …………………49
4.2.8麩光甘肽過氧化酶(Glutathione peroxidease,GPx)活性分析結果…………………………………………………49
4.2.9錳-超氧歧化酶(Manganese superoxide dismutase,MnSOD)活性分析結果………………………………………………50
4.2.10 銅-鋅-超氧歧化酶(copper-zinc superoxide dismutase,
Cu-ZnSOD)活性分析結果 …………………………………50
4.2.11 端粒酶活性(Telomerase activity)分析結果………51
4.2.12端粒長度(Telomere length)分析結果 ………………51
4.2.13 Forkhead box-O(FOXO)表現量分析結果………………51
4.2.14 SirT1(Sirtiun 1)表現量分析結果……………………52
4.2.15 JNK(c-Jun N-terminal kinase)表現量分析結果……52
4.2.16 MnSOD表現量分析結果…………………………………52
4.2.17 Catalase表現量分析結果 ……………………………53
4.3工蜂與蜂王老化指標差異…………………………………………54
4.3.1 脂褐質(lipofuscin granules)差異 …………………54
4.3.2 β-半乳糖苷酶(SA-β Gal)活性差異…………………54
4.3.3 超氧陰離子(O2‧-)差異 …………………………………54
4.3.4 過氧化氫(H2O2)差異 ……………………………………54
4.3.5 脂質過氧化程度(lipid peroxidation)以及蛋白質氧化程度(protein oxidation)差異 …………………………55
4.3.6 過氧化氫酶(Catalase)與麩光苷肽過氧化酶(Glutathione peroxidease,GPx)活性差異……………56
4.3.7 超氧歧化酶(superoxide dismutase)活性差異………57
4.3.8 端粒酶活性(Telomerase activity)與端粒長度(Telomere length)差異 …………………………………57
4.3.9 Forkhead box-O(FOXO)表現量差異……………………57
4.3.10 SirT1(Sirtiun 1)表現量差異…………………………57
4.3.11 JNK(c-Jun N-terminal kinase)表現量差異…………58
4.3.12 MnSOD表現量分析結果…………………………………58
4.3.13 Catalase表現量分析結果 ……………………………58
第五章 討論 …………………………………………………60
5.1工蜂與蜂王細胞內老化相關指標物質之變化……………………60
5.2工蜂與蜂王細胞內氧化壓力與抗氧化酵素之變化………………63
5.3 工蜂與蜂王端粒酶活性與端粒長度之變化 ……………………65
5.4工蜂與蜂王參與代謝之基因表現變化差異………………………67
5.4.1工蜂細胞內之代謝之基因表現變化………………………67
5.4.2蜂王細胞內參與代謝之基因變化…………………………68
5.5工蜂與蜂王細胞內抗氧化酵素效率差異…………………………70
第六章 結論 …………………………………………………72
圖表……………………………………………………………74
參考文獻 ……………………………………………………101
附錄
附錄一、工蜂與蜂王老化指標比較圖
附錄二、光學顯微鏡下不同年齡之工蜂細胞型態
附錄三、光學顯微鏡下不同年齡之蜂王細胞型態
附錄四、10~40日齡之工蜂外觀變化
附錄五、使用SPSS軟體進行多重比較方法
附錄六、本論文中圖表製作方式
圖表目錄
圖一、不同階級(caste)之蜜蜂外觀差異 ……………………………74
圖二、不同年齡工蜂之外觀差異………………………………………75
圖三、不同年齡蜂王之外觀差異………………………………………75
圖四、蜜蜂腹部細胞分布情形…………………………………………76
圖五、不同年齡工蜂之脂褐質(lipofuscin granules)分析結果…77
圖六、不同年齡工蜂之SA-β-半乳糖苷酶(SA-β-gal)分析結果…78
圖七、不同年齡工蜂之超氧自由基(O2‧-)分析結果…………………79
圖八、不同年齡工蜂之過氧化氫(H2O2)分析結果……………………80
圖九、不同年齡工蜂之脂質過氧化(lipid peroxidation)分析結果 ………………………………………………………………81
圖十、不同年齡工蜂之蛋白質氧化(protein oxidation)分析結果 ………………………………………………………………82
圖十一、不同年齡工蜂之過氧化氫酶(catalase)、麩胱甘肽過氧化酶(GPx)、超養歧化酶(SOD)分析結果 …………………………83
圖十二、不同年齡工蜂之端粒酶活性(Telomerase activity)、端粒長度(Telomere length)分析結果 …………………………84
圖十三、不同年紀工蜂之端粒長度計算分析結果……………………85
圖十四、不同年齡工蜂之FOXO表現量分析結果(70kDa)……………85
圖十五、不同年齡工蜂之SirT1表現量分析結果(82kDa) …………86
圖十六、不同年齡工蜂之JNK表現量分析結果(54/46kDa)…………86
圖十七、不同年齡工蜂之MnSOD表現量分析結果(24kDa)……………87
圖十八、不同年齡工蜂之Catalase表現量分析結果(64kDa)………87
圖十九、不同年齡蜂王之脂褐質(lipofuscin granules)分析結果 ……………………………………………………………88
圖二十、不同年齡蜂王之SA-β-半乳糖苷酶(SA-β-gal)分析結
果 ……………………………………………………………89
圖二十一、不同年齡蜂王之超氧自由基(O2‧-)分析結果……………90
圖二十二、不同年齡蜂王之過氧化氫(H2O2)分析結果………………91
圖二十三、不同年齡蜂王之脂質過氧化(lipid peroxidation)分析 …………………………………………………………92
圖二十四、不同年齡蜂王之蛋白質氧化(protein oxidation)分析
結果 ………………………………………………………93
圖二十五、不同年齡蜂王之過氧化氫酶(catalase)、麩胱甘肽過氧化酶(GPx)、超養歧化酶(SOD)分析結果……………………94
圖二十六、不同年齡蜂王之端粒酶活性(Telomerase activity)、端粒長度(Telomere length)分析結果……………………95
圖二十七、不同年紀蜂王之端粒長度計算分析結果 ………………96
圖二十八、不同年齡蜂王之FOXO表現量分析結果(70kDa) …………96
圖二十九、不同年齡蜂王之SirT1表現量分析結果(82kDa)…………97
圖三十、不同年齡蜂王之JNK表現量分析結果(54/46kDa) …………97
圖三十一、不同年齡蜂王之MnSOD表現量分析結果(24kDa)…………98
圖三十二、不同年齡蜂王之Catalase表現量分析結果(64kDa) ……98
表一、不同年齡工蜂老化指標變化……………………………………99
表二、不同年齡蜂王之老化指標變化 ………………………………100
1. Vina,J.G., Borras,C., Miquel, J.Theories of ageing.IUBMB Life 2007;59:249-254.
2. Kasapolu, M., Ozben, T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp gerontol 2001;36:209-220.
3. Hadly, E.C., Lakatta, E.G.,Morrison-Bogorad, M., Wanner, H.R., Hodes, R.J. The future of aging therapies. Cell 2005;120:557-567.
4. Kirkwood, T.B., Boys, R.J., Gillespie, C.S., Proctor, C.J., Shanley, D.P., Wilkinson, D.J. Towards an e-biology of aging: integrating theory and data. Nat Rev Microbiol 2003;4:243-249.
5. Hopper, A.K., Hall, B.D. Mating type and sporylation in yeast Mutations which alter mating-type control over sporulation. Genetics 1975;80:41-59.
6. Isamu, Y., Mayumi, A., Rika, I., Takashi, I., Tom, M., Hayato, H., Barry, B. Influence of temperature on the inheritance of adult life span in Drosophila melanogaster. Hereditas 1990;112:117-127.
7. Shuji, K., Peter E.B.,et al. The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associat ed Biomarkers. PLoS Genetics 2008;4:1-14.
8.Conti B. et al. Transgenic Mice with a Reduced Core Body Temperature Have an Increased Life Span. Science 2006;314: 825-828.
9.Wihlmark, U., Wrigstad, A., Roberg, K., Nilsson, S.E., Brunk, U.T. Lipofusin accumulation in cutured retunal pigment epithelial cells causes enhandced sensitivity ti blue light irradiation. Free Rad Biol Med 1997;22:1229 -1234.
10.Hueck. W. Pigment studien. Beitrag Path Anat 1912;54:68 -232.
11.Brunk, UT., Terman, A. Lipofuscin: Mechanisms of age-related accumulation and influence on cell functions. Free Rad Biol Med 2002;33:611-619.
12. Terman, A., Brunk, UT. Lipofuscin: mechanisms of formation and increase with age. Apmis 1998;106;265-276.
13.Strehler, B.L., Mark, D.D., Mildvan, A.S. Rate and magnitude of age pigment accumulation in the human myocardium. J Gerontol 1959;14:430-439.
14.Terman, A., Brunk, UT. Ceroid/lipofuscin formation in cultured human fibroblasts: the role of oxidative stress and lysosomal proteolysis. Mech Ageing Dev 1998;104:277-291.
15.Schmitt, C.A. Cellular senescence and cancer treatment. Biochim Biophys Acta 2007;1775:5-20.
16.Terman, A., Brunk, UT. Lipofuscin. Int J Biochem Cell Biol 2004;36:1400-1404.
17.Kurz, D.J., Decary, S., Hong, Y., Erucalimsky, J.D. Senescence-associated beta-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 2000;113;3613-3622.
18.Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-smith, O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995;92:9363-9367.
19. Dimri, GP., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, EE., Linskens, M., Rubelj, I., Pereira Smith, O., Peacockem, M., Campisi, J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995;92:9363-9367.
20.Vaziri, N.D. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens 2004;13:93-99.
21.Henkle-Duhrsen, K., Kampkotter, A. Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol 2001;114:129-142.
22.Berlett, B.S., Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997;272:20313- 20316.
23.Balaban, R.S., Nemoto, S., Finkel, T. Mitochondria , oxidant and aging. Cell 2005;120:483-395.
24.Henkle-Duhrsen, K., Kampkotter, A. Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol 2001;144:129-142.
25.Balaban, R.S., Nemoto, S., Finkel, T. Mitochondria, oxidants, and aging. Cell 2005;120:483-495,
26.Sohal, RS., Ku, HH., Agarwal, S., Forster, MJ., Lal,H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Aging Dev 1994;74:121-133.
27.Kaoru, M., Shinji, K., Masatoshi, Y., Denichi, M. Hydrogen Peroxide as a Tumoricidal Mediator of Murine Polymorphonuclear Leukocytes Induced by a Linear β-1,3-o-Glucan and Some Other Immunomodulators1. Cancer Res 1985;45:3482-3486.
28.Lardinois, OM., Tomer, KB., Mason, RP., Deterding, LJ. Identification of protein radicals formed in the human neuroglobin-H2O2 reaction using immuno-spin trapping and mass spectrometry. Biochemistry 2008;30:10440-8.
29.John, M., Lawler, HK., Jong-Hee, K., Min-Hwa, S. Exercise training inducibility of MnSOD protein expression and activity is retained while reducing prooxidant signaling in the heart of senescent rats. Am J Physiol Regul Integr Comp Physiol 2009;296:1496-502.
30.Sohal, RS., Agarwal, S., Dubey, A., Orr, W.C. Protein oxidative damage is associated with life expectancy of houseflies. Proc. Natl. Acad. Sci. USA 1993;90:7255-7259.
31.Hulbert, A.J., Pamplona, R., Buffenstein, R., Buttemer, W.A. Life and death:metabolic rate,membrane composition,and life span of animals, Physiol Rev 2007;87:1175-1213.
32.Voss, P., Siems, W. Cinical oxidation parameters of aging. Free radical Res 2006;40:1339-1349.
33.Petropoulos, I., Friguet, B. Maintenance of proteins and aging: the role of oxidized protein repair. Free Radic Res 2006;40:1269-1276.
34.Sohal, R.S., Agarwal, S., Dubey, A., Orr, W.C. Protein oxidative damage is associated with life expectancy of houseflies. Proc Natl Acad Sci USA 1993;90:7255-7259.
35.Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J., Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994;74:121-33.
36.Russell, P., Garland, D., Zigler, J.S., Jr.,Meakin, S.O., Tsui, L.C., Breitman, M.L. Aging effects of vitamin C on a human lens protein produced in vitro. FASEB J 1987;1:32-35.
37.Mecocci, P., Fano, G., Fulle, S., Macgarvey, U., Shinobu, L., Polidori, M.C., Cherubini, A., Vecchirt, J., Senin, U., Beal, M.F. Age-dependent increase in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 1999;26:303-308.
38.Smith, C.D., Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Stadtman, E.R., Floyd, R.A., Markesbery, W.R. Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer disease. Proc Natl Acad Sci USA 1991;88:10540-10543.
39. Voss, P., Siems, W. Clinical oxidation parameters of aging. Free Radic Res 2006;40:1339-1349.
40. McCord, JM., Fridovich, I. Superoxide dismutase:an enzymic function for erythrocuprein(hemocuprein). J Biol Chem 1969;244:6049-6055.
41. Fridovich, I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995;64:97-112.
42. Veal, E.A., Day, A.M., Morgan, B.A. Hydrogen peroxide sensing and role of oxidized protein repair. Free radical Res 2006;40:1269-1276.
43. Carlioz, A., Touati, D. Isolation of superoxide dismutase mutants in Escherichia Coli: Is superoxide dismutase necessary for aerobic life? EMBO J 1986;5:623-30.
44. Bilinski, T., Krawiec, Z., Liczmanski, A., Litwinska, J. Is hydroxyl radical generated by the Fenton reaction in vivo? Biochem Biophys Res Commun 1985;130;533-539.
45.Sharma,YK., Davis, KR. Ozone-induce expression of
stress-related genes in Arabidopsis thaliana. Plant Physiol 1994;105:1089-1096.
46.Guan, L., Scandalios, J.G., Characterization of the catalase antioxidant defense gene Cat1 of maize, and its developmentally regulated expression in transgenic tobacco. Plant J. 1993;3:527-536.
47.Willekens, H., Inz´e, D., Van Montagu, M. Van Camp, W.
Catalase in plants. Mol Breed 1995;1:207-228.
48.Veal, E.A., Day, A.M., Morgan, B.A. Hydrogen peroxide sensing and aignaling. Mol Cell 2007;26:1-14.
49.Henry, N., Kirkman, MR., Anna, M., Ferraris, G., Gaetani, F. Mechanisms of Protection of Catalase by NADPH. J Biol Chem 1999;274:13908-13914.
50.Niebel, A., Heungens, K., Barthels, N., Inz´e, D., Van Montagu, M., Gheysen, G. Characterization of a pathogen induced potato catalase and its systemic expression upon nematode and bacterial infection. Mol. Plant Microbe Interact. 1995;8:371-378.
51.Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M., Coskun, P.E., et al. Extension of murine life span by overwxpression of catalase targeted to mitochondria. Science 2005;308:1909-1911.
52.Espinoza, S.E., Guo, H., Fedarko, N., DeZern, A., Fried, L.P., Xue, Q.L., Leng, S., Beamer, B., Walston, J.D. Glutathion peroxidease enzyme activity in aging. J Gerontol A Biol Sci Med Sci 2008;63:505-509.
53.Miklos, M., Marta, E., Gihan, S., Gyorgyi, V., Krisztian, B., Maria, W. Genetics of glutathione peroxidase. Acta Biologica Szegediensis 2003;47:135-138.
54.Siqueira, I.R., Fochesatto, C., de Andrade, A., Santos, M., Hagen, M., et al. Total antioxidant capacity is impaired in different structure from aged rat brain. Int J Dev Neurosci 2005;23:663-671.
55.Atroshi, F., Sankari, S. Variation of erythrocyte glutathione peroxidase activity in Finn sheep. Res Vet Sci 1981;31:267-271.
56.Lingaas, F., Brun, E., Froslie, A. Estimates of heritability for selenium and glutathione peroxidase levels in pigs. J Anim Breed Genet 1991;108:48-53.
57.Geserick, C., Blasco, M.A. Novel roles fer telomerase in aging. Mech Ageing Dev 2006;127:579-583.
58.Davis, T., Kipling, D. Telomeres and telomerase biology in vertebrates: progresss towards a non-human model for replicative senescence and aging. Biogerontology 2005;6: 371-385.
59.Toren, F., Jan, V., Jerry, WS. Time,tumors and telomeres. EMBO reports 2006;7:479-483.
60.de Lange, T., Shiue, L., Myers, R.M., Cox, D.R., Naylor, S.L., Killery, A.M., Varmus, H.E. Structure and variability of human chromosome ends. Mol Cell Biol 1990;10:518-527.
61.Emma, J.. Chapman,1., Gavin, K., Margaret, AK. Genes Involved in Differentiation, Stem Cell Renewal, and Tumorigenesis Are Modulated in Telomerase-Immortalized Human Urothelial Cells. Mol Cancer Res 2008;6:1154-1168.
62.Huffman, K.E., Levene, S.D., Tesmer, V.M., Shay, J.W., Wright, W.E. Telomere shortening is proportional to the size of G-rich telomeric 3’overhang. J Biol Chem 2000;275: 19719-19722.
63.Maria, AB. The epigenetic regulation of mammalian telomeres. Nature Reviews Genetics 2007;8:299-309.
64.Baird, D.M., Rowson, J., Wynford-Thomas, D. Kipling, D. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Rev Genet 2003;33:203-207.
65. Blasco, M.A. Mice with bad ends:mouse models for the study of telomeres and telomerease in cancer and aging. The EMBO journal 2005;24:1095-1103.
66.von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002;27:339-344.
67.Rine, J.D., Hick, J.B., Herskowitz, I. A suppressor of mating type locus mutation in Saccharomyces cerevisae : evidence for and identifyication of cryptic mating type loci. Genetics 1979;93:877-901.
68.David, SG. Sir proteins as transcriptional silencers Trends Biochem Sci 2001;26:685-686.
69. Paul, S., James, RB. Making good neighbors: The right fence for the right job. nature struct biol 2003;10:241-243.
70.Saunders, LR., Verdin, E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 2007;26:5489-5504.
71.Cohen H.Y., Miller C., Bitterman K.J., Wall N.R., Hekking B., Kessler B., Howitz K.T., Gorospe M., de Cabo R., Sinclair D.A. Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase. Science 2004;305: 390- 392.
72 Ingo,BL., Perolof, B. Sirt1:a metabolic master switch that modulates lifespan. Nature Medicine 2006;12:34-36.
73.Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., Longo, V.D. Sir2 blocks extreme life-span extension. Cell 2005;123:655-667.
74.Icard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature AOP, published online 2 June 2004.
75.Rasbach, K.A., Schnellmann, R.G., Signaling of mitochondrial biogenesis following oxidant injury. J Bio Chem 2007;282:2355-2362.
76.Accili, D., Arden, K.C., FOXOs at the crossroads of cellular metabolism ,differentiation and transformation. Cell 2004;117:421-426.
77.Dong-Mei, C., Jian, L. The structure and function of forkhead (Fox) transcription factor family. Chinese Bulletin of Life Sciences 2006;18:491-496.
78.Weigel, D., Jäckle, H. The fork head domain: a novel DNA
binding motif of eukaryotic transcription factors? Cell 1990;63:455-456.
79.Lam1, WF., Francis, RE., Petkovic, M. FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans 2006;34:722-726.
80.Calnan, DR., Brunet, A. The FoxO code. Oncogene 2008;27: 2276-2288.
81.Arden, K.C. Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer. Exp Gerontol 2006;41:709-717.
82. Tournier, C., Hess, P., Yang, DD., Xu, J., Turner, TK., Nimnual A et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000;288:870-874.
83.Jensen, V.L., Gallo, M., Riddle, D.L. Targets of DAF-16 involved in caenorhabditis elegans adult longevity and dauer formation. Exp Gerontol 2006;41:922-927.
84.Patricia, SP., Michael, AL., Aladin, MB. FOXO transcription factors are mechanosensitive and their regulation is altered with aging in the respiratory pump. Am J Physiol Cell Physiol 2008;294:1056-1066.
85.Marieke, AG., Sanne, W., Alida, MM de Vries-Smits., Ingrid, S., Nancy, DR., Johannes, LB., Boudewijn, MT. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 2004;23: 4802-4812.
86.Dhanasekaran,DN., Reddy,EP. JNK signaling in apoptosis. Oncogene 2008;27:6245-6251
87.Hibi, M., Lin, A., Smeal, T., Minden, A., Karin, M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 1993;7:2135–2148.
88.Gennadij, R. c-Jun expression, activeation and function in neural cell death, inflamemation and repair. J Neurochem 2008;107:898-906.
89.張世揚,《養蜂概論》,初版,淑馨出版社,台北市,民國七十四年。
90.黃文誠,吳本熙,《養蜂手冊》, 初版,五洲出版社,台北市,民國八十九年。
91.吳登楨,<台灣蜂業研究之回顧與展望>,《科學農業》,第五十卷第三期,頁189-193,民國九十一年。
92. George, M.,et al. Honey Bee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera.Nature 2006;443: 931-949.
93.張世揚,謝豐國,陳吉同,何鎧光,<東方蜂(Apis cerana)和西方蜂(Apis mellifera)在李花上授粉生態比較>,《台灣昆蟲》, 第二十卷,頁197-208,民國九十一年。
94.曾志將,顔偉玉,饒波,謝憲斌,<蜜蜂性比研究進展>,《台灣昆蟲特刊》,第四卷,頁193-198,民國九十一年。
95.曾志將,薛運波,閆德斌,吳桂生,<雄蜂日齡對授精蜂王開產時間及蜂群繁殖力的影響>, 《台灣昆蟲》,第四卷,頁187-191,民國九十一年。
96. Rueppell, O., Fondrk, M.K., Page, Jr. Biodemographic analysis of male honey bee mortality, Aging cell 2005; 4:13-19.
97. Omholt, S.W., Amdam, G.V. Epigenic regulation of aging in honey bee workers. Aging Knowl Environ 2004;26:28.
98. Kristen, N.W., Jennifer, L.C., Kaitlin, C., Susan, F., Olav, R. Age, caste, and behavior determine the replicative activity of intestinal stem cells in honeybees (Apis mellifera L.) Exp Gerontol 2008;43:530-537.
99. Winston, M.L. The biology of the honey bee. Harvard University press,Cambrige 1987.
100. Parker, J.D., Packer, K.M., Sohal, B.H., Sohal, R.S., Keller, L. Decrease expression of Cu-Zn SOD 1in ants with extreme lifespan. Proc Natl Acad Sci 2004;101:3486-3489.
101. Je-Ruei, L., Yuan-Chang, Y., Li-Shian, S., and Chi-Chung, Peng. Antioxidant Properties of Royal Jelly Associated with Larval Age and Time of Harvest. J Agric Food Chem. 2008;56: 11447-11452.
102.曾慶瀛,余哲仁,李錦楓,<蜂王乳粉末化之製備與其貯存期間物性變化之研究>,《中國農業化學會誌》第三十二卷第一期,頁113-124,民國八十三年。
103. Kazu-Michi, S., Yoichiro, I., Hiroe, M., Yayoi, Y., Yukio N., Shozo, O., Yoko, A., Takeshi, M., Satoshi, M. Estrogenic Activities of Fatty Acids and a Sterol Isolated from Royal Jelly. Advance Access Publication 2008;5:295-302.
104.陳裕文,<蜂產品的研究與食療>,《農業推廣》,第二卷,頁1-3,民國八十九年。
105. Blum, M.S., Novak A.F. 10-Hydroxy-decenoic acid, an antibiotic found in royal jelly. Science 1959;130:452-453.
106. Erem, C., Deger, O., Ovali, E., Barlak, Y. The effects of royal jelly on autoimmunity in Graves' disease. Endocrine 2006;30:175-83.
107. Miguel, C., Rodrigo, A.V., Slivia, R.,et al. Vitellogen, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci 2007;104:7128-7133.
108. Jemielity, S., Kimura, M., Parker, J.D., Cao, X.J., Aviv, A., Keller, L. Short telomeres in short lived males: what are the molecular and evolutionary cause? Aging Cell 2007;6:225-233.
109. Hugh M.R., Karl, H.J.Gordon. Canonical TTAGG-repeat telomeres and telomerase in the honey bee, Apis mellifera. Genome Res 2006;16:1345-1351.
110.Snodrgass, R.E. Anatomy of the Honeybee. Cornell University, London 1984.
111.Haunerland, N.H., Shark, P.D. Regional and functional difference in the insect fat body. Annu Rev Entomal 1995;40:121-145.
112.Engels, W. Occurrence and significance of
Vitellogenins in female castes of social Hymenoptera.
Am Zool 1974;14:1229–1237.
113.Pinto, L. Z., Bitondi, M.M.G., Zila, L.P.S.Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone analogue, pyriproxyfen. J Insect Physiol 2000;46: 153-160.
114.Chin-Yuan, H., Chia-Wei, L. Magnetoreception in Honeybee. Science 1994;265:95-97.
115.Bradford, M.M. A dye binding assay for protein. Anal Biochem 1976;72:248-254.
116.Allaire, J., Maltais, F., LeBlanc, P., Simard, P.M., Whittom, F., Doyon, J.F., Simard, C., Jobin, J. Lipofuscin accumulation in the vastus lateralis muscle in oatients with chronic obstructive pulmonary disease. Muscle Nerve 2002;25:383-389.
117.Kishi,S., Uchiyama, J., Baughman, A.M., Goto, T., Lin, M.C., Tsai, S.B. The zebrafish as a vertebrate model of functional aging and very gradual senescence, Exp Gerontol 2003;38:777-786.
118. Tarpey MM, Wink DA, Grisham MB. Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 2004;286:431-44.
119.Thomas, M., Igor, B., Andrei, LK., David, G. Harrison Detection of Superoxide in Vascular Tissue. Arterioscler. Thromb. Vasc. Biol. 2002;22:1761-1768;
120.Marc, E., Lalande, V., Richard, G. Hoechst 33342 dye uptake as a probe of membrane permeability changes in mammalian cells. Proc Nati Acad Sci USA 1981;78:363-367,
121.John, HP. Use of Hoechst Dyes 33258 and 33342 for Enumeration of Attached and Planktonic Bacteria. Appl Environ Microbiol 1982;43:939-944
122.Allan, YC., Chiang, Yu., Annette,B., Lynn, FP., Leroy, FL. A New Mammalian DNA Topoisomerase I Poison Hoechst 33342: Cytotoxicity andDrug Resistance in Human Cell Cultures. Cancer Res 1993;53:1332-1337.
123.Bopp, S.K., Abicht, H.K., Knauer, K. Cooper-induced oxidative stress in rainbow trout gill cells. Aquat Toxicol 2008;86:197-204.
124.Janero, D.R. Malondialdehyde and thiobarbituric acid reactiveity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 1990;9:515-540.
125.Sohal, R.S., Agarwal, S., Sohal, B.H. Oxidative stresss and aging in the Mongolian gerbil (Meriones unguiculatus). Mech Aging Dev 1995;81:15-25.
126.Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, E.R. Determination of carbonyl content in oxidatively modified proteins. Method Enzymol 1990;186:464-478.
127. H.Ukeda, A.K., Sarker, D., Kawana, M. Flow-Injection Assay of Superoxide Dismutase Based on the Reduction of Highly Water-Soluble Tetrazolium. Anal Sci 1999;15:353.
128. Burdon, V., Gill and C. Rice-Evans. Reduction of a Tetrazolium Salt and Superoxide Generation in Human Tumor Cells (HeLa). Free Rad Res Commun 1993;18:369.
129.Romao, C.V., Liu, M.Y., Le Gall, J., Gomes, C.M., et al. The superoxide dismutase activity of desulfoferrodxin from Desulfovibrio desulfuricans ATCC 27774. Eur J Biochem 1999;261:438-443.
130.Yen,HC., Chang, HM., Majima, HJ., Chen, FY., Li, SH. Levels of reactive oxygen species and primary antioxidant enzyme in W138 verus transformed W138 cells following bleomycin treatment. Free Radic Biol Med 2005;38:950-959
131.Kim, N.W., Wu, F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic acids Res. 1997;25:2595-2597.
132.Yuebo, G., Kory, J., Engelke,L., Christopher, A., Brown, L., Jessie, L.S., Telomere Amount and Length Assay. Pharmaceutical Research 2001;18:1656-1659.
133.Mizuko, O., Kenji, K.K., Ryo, F., Satoshi, Y., Haruhiko, F. Identification and characterization of the telomerase reverse transcriptase of Bombyxmori (silkworm) and Tribolium castaneum (flour beetle). Gene 2006;376:281-289
134.Shuji, K., Peter E.B.,et al. The Identification of Zebrafish Mutants Showing Alterations in Senescence- Associat ed Biomarkers. PLoS Genetics 2008;4:1-14.
135.Herrera, M., Jageeswaran, P. Annual fish as a genetic model for aging, J Gerontol A Biol Sci Med Sci. 2004;59:101-107.
136.Gerhard, G.S. Small laboratory fish as models for aging research. Aging Res Rev. 2007;6:64-72.
137.Valenzano, D.R., Terzibasi, E., Genade, T., Cattaneo, A., Domenici, L., Cellerino, A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 2006;16:296-300.
138.Hsu, CY., Chiu, YC., Hsu, WL., Chan, YP. Age-related markers assayed at different developmental stages of the annual fish Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 2008.(In press).
139.Conti B. et al. Transgenic Mice with a Reduced Core Body Temperature Have an Increased Life Span. Science 2006;314: 825-828.
140. Blanka, LR., Seymour, B., Stephen,LH. Drosophila drop-dead mutations accelerate the time course of
age-related markers. Proc. Natl. Acad. Sci. USA .1997;94:6303-6306.
141.Tino, K., Alexei, T., Ulf, TB. Autophagy, ageing and apoptosis: The role of oxidative stress and lysosomal iron. Archi Biochem Biophys 2007;462:220-230.
142. Doris, A., Bruno, B., Aldo, V., Hans-Otto, Pörtner. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Physiol 1998;120:425-435.
143. Wada, H., Murata, N. The essential role of phospoatidylglycerol in photosynethsis. Photosyns Res 2007;92:205-215.
144.Alexei, T., Ulft, B. Oxidative Stress, Accumulation of Biological”Garbage”, and Aging. Aging 2006;8:197-204.
145. Chaudhary, A., Sharma, SP., James, TJ. Lipofuscin accumulation in neurons with restraint stress. Gerontology 1995;41:229-238.
146. Hulbert, AJ., Explaining longevity of different animals: is membrane fatty acid composition the missing link.
147. Brunk, UT., Jones, CB., Sohal, RS. A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res 1992;275:395-403.
148. Eldred, GE., Katz, ML. The autofluorescent products of lipid peroxidation may not be lipofuscin-like. Free Radic Biol Med 1989;7:157-163.
149. Schnell, SA., Staines, WA., Wessendorf, MW. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 1999;47:719-730.
150. Laura Saade, H., Louie, K., Hulbert, AJ. Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. Exp Gerontol 2007;42:601-609.
151. Miguel, Corona., Rodrigo, AV., Silvia, Remolina., et al. Vitellogenin, juvenile hormone, insulin signaling,
and queen honey bee longevity. Proc Natl Acad Sci USA 2007;104: 7128–7133.
152. Doris, A., Bruno, B., Aldo, V., Hans-Otto, P. Exposure to elevated temperatures and hydrogen peroxide elicits
oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Physiol 1998;120:425-435.
153. Michael R. Hydrogen peroxide as second messenger in lymphocyte activation. nature immunology 2002;3:1129-1134.
154. Raquel Regina Duarte, M., Iracilda Zeppone, C., Wagner, V. Release of Intermediate Reactive Hydrogen Peroxide by Macrophage Cells Activated by Natural Products. Biol Pharm Bull 2001;24:201-204.
155.Kasapoglu, M., Özben, T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol 2001;36:209-220.
156. Orr, WC., Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994;263:1128-1130.
157. Ana, N., Carmen, G., Marı´a-Jesu´s S., Hipo´lito G.,
Manuel, J., Ba´ndez., Alejandro, DB., Alberto, Boveris. Vitamin E at high doses improves survival, neurological performance,and brain mitochondrial function in aging male mice. Am J Physiol Regul Integr Comp Physiol 2005;289:1392-1399.
158. Willam, CH., et al. Inhibition of telomerase limits the growth of human cancer cells.Nature Medicine 1999;5: 1164-1170.
159.Snodgrass, RE. Anatomy of the honey bee. Cornell University press, 1984,London. 155.
160.采萬志等,《普通昆蟲學》,中國農業大學出版社,2001。
161.Deng, Y., Chan, SS., Chang, S. Telomere dysfunction and tumour suppression:the senescence connection. Nat Rev Cancer 2008;8:450-458.
162.Harley, CB., Futcher, AB., Greider, CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990;345:458-60.
163.Hiroshi I, et al. Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum Genet 1998;102:391-402.
164.Blasco MA, Lee HW, Hande MP et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997;91:25-34.
165.Chang S, Multani AS, Cabrera NG et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 2004;36:877-82.
166. Bodnar, AG., Ouellette, M., Frolkis, M., et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998;279:349-352.

167. Nikulinaa,MA., Sandhua, N., Shamima, Z., et al. The JNK binding domain of islet-brain 1 inhibits
IL-1 induced JNK activity and apoptosis but not
the transcription of key proapoptotic or protective
genes in insulin-secreting cell lines. Cytokine 2003;24 13-24.
168.Jae-J, S., Yong-J, L. Differential activation of the JNK signal pathway by UV irradiation and glucose deprivation. Cellular Signalling 2007;19:563-572.
169, Neale, TH., Joanne, SF., Timothy, BG. Loss of Catalase Increases Malignant Mouse Keratinocyte Cell Growth Through Activation of the Stress Activated JNK Pathway. Mol Carcinog 2008;47:349-360.
170. Shing-Jong, L., Song-Kun, Shyue., et al. Superoxide dismutase and catalase inhibit oxidized low-density
lipoprotein-induced human aortic smooth muscle cell proliferation:Role of cell-cycle regulation, mitogen-activated protein kinases,and transcription factors. Atherosclerosis 2007;190:124-134.
171. Armando, Horst., Boudewijn M.T, Burgering. Stressing the role of FoxO proteins in lifespan and disease. Nature Reviews Molecular Cell Biology 2007;8:440-450.
172. Qingying, M., Ting Wong, Y., Jie, C., Runsheng, R. Age-related changes in mitochondrial function and antioxidative enzyme activity in fischer 344 rats. Mech Ageing Dev 2007;128:286-292.
173. Guilherme, E., Fernanda Schäfer, H., Tiago Boeira, S., et al. Antioxidant enzymes activities and protein damage in rat brain of both sexes. Exp Gerontol 2006;41: 368-371.
174. Hong, Wang., Honglei, Liu., Rui-Ming, Liu. Gender difference in glutathione metabolism during aging in mice. Exp Gerontol 2003;38:507-517.
175. Sebastian, M., Hans-Dieter, Riedel., Wolfgang, S. Determination of Catalase Activity at Physiological
Hydrogen Peroxide Concentrations. Ana Biochem 1997;245:55-60
176. http://www.bhp-gc.tw/index.php 行政院衛生署國民健康局遺傳病諮詢網 Bureau of Health Promotion,Department of Health, R.O.C.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔