(3.235.191.87) 您好!臺灣時間:2021/05/14 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃育芬
研究生(外文):Yu Fen Huang
論文名稱:EBV-N-LMP1腫瘤微環境及其巨噬細胞製造通道之能力的探討
論文名稱(外文):The microenvironment for EBV-N-LMP1 tumor progression and the in vitro tunnel activity of tumor-associated macrophage
指導教授:周開平
指導教授(外文):K. P. Chow
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:72
中文關鍵詞:腫瘤相關巨噬細胞腫瘤微環境隧道試驗
外文關鍵詞:TAMtumor microenvironmenttunnel assay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
抗血管新生為新興的癌症治療方式。近年來的研究逐漸瞭解免疫系統參與了腫瘤血管新生的調控。因此,瞭解各類腫瘤微環境中免疫因子的變化機制,有助於針對腫瘤的特性研發標靶治療。在諸多免疫因子中,浸潤在腫瘤組織中的巨噬細胞 (TAM),由於會因腫瘤組織的微環境分化成促進血管新生的角色,已成為當今研究標靶治療的有利目標。鼻咽癌為中國南方與台灣獨特的癌症,其成因與EB病毒的重要致癌基因Lantent membrane protein-1 (N-LMP1)有密切關係。為瞭解在活體中N-LMP1致癌的機轉,本實驗利用過去建立的N-LMP1腫瘤動物模式探討腫瘤發展的機轉。研究分為兩大部分,第一部分為利用RT-PCR方式,去瞭解N-LMP1腫瘤在不同時期(第7、14、21、28天)的腫瘤微環境部分免疫因子表現的情形。第二部分為建立出可模擬TAM參與血管新生的體外試驗。由第一部分結果可知,浸潤在N-LMP1腫瘤中的白血球,以TAM為大宗,CD4-T細胞非常少,但有趣的是,NK細胞也有相當的數量。以細胞激素來看,具促進發炎和血管新生的IL-1β穩定表現,亦有少量IL-10的存在。在趨化素部份,CCL2/CCR2、CCL3/CCR1,CCR5及IP10均存在於腫瘤中,顯示N-LMP1致癌過程對趨化系統的依賴。在血管相關的因子中,CD31及VEGF穩定存在,而其接受者以VEGFR2較穩定。Ang1/Tie2均以第21和28天出現較多。經與小鼠免疫化之後不具生長力的腫瘤比較,發現明顯改變的因子為CD4、NK及IL12的增加,CD31的減少,顯示透過增強免疫的確可經細胞浸潤類型及活性的改變而降低血管新生並抑制腫瘤生長。第二部分以人類單核球細胞株THP-1做測試。我們測試出體外隧道試驗的條件,包括matrigel體積為15μl而凝固時間為1小時,試驗培養條件為20小時。接著以腫瘤內TAM做體外隧道試驗,發現額外添加中和CCL3的抗體後,TAM的通過能力降低,故可初步推斷CCL3具有活化TAM去進行基質分解的能力。本實驗顯示N-LMP1腫瘤的血管新生微環境可經CD4T細胞等細胞免疫機制調控,並且所建立的體外隧道試驗,可用於未來探討TAM促進血管形成過程的機轉。根據初步的結果發現CCL3能夠調節巨噬細胞分解基質的能力,提供未來CCL3可能成為一個抗癌標靶目標的可能性。
Nasopharyngeal carcinoma (NPC) is an unique cancer endemic in South China and Taiwan. And the Epstein-Barr virus-encoded oncogene latent membrane protein- 1 (N-LMP1) is considered as the major promoter in NPC development. To understand the pathogenesis of LMP1, we have established an N-LMP1 tumor mouse model. In the model, this study is focused to analyse the gene expression of various immune and angiogenic factors along tumor progression by RT-PCR. In addition, we developed an in vitro tunnel assay to mimic the angiogenic property of TAM, making tunnels in stroma during tumor angiogenesis. In the RT-PCR study, we found both CD11b and F4/80 (markers of TAM) are consistency expressed, indicating it may be the major population of the infiltrated leukocytes. CD4 is rare, but NK detected by NK1.1 is relatively at higher expression level. IL-1β is stably expressed and IL-10 is rare. CCL2/CCR2, CCL3/CCR1, CCR5 and IP10 all exit in N-LMP1 tumor. We also found stable expression of CD31 and VEGF/VEGFR2. The expression of Ang1/Tie2 is more evident on day 21 and 28. Compare to the tumor becoming non angiogenic in the immunized mice, the apparent differences are the increase of CD4, NK and IL12, and the decrease of CD31. The data suggested that N-LMP1 tumor angiogenesis and progression is complex process heavily involved with various immune cells and factors. In the tunnel assay, we have developed optimal conditions for in vitro tunnel assay and used TAM for a preliminary test. We found that TAM alone could penetrate the matrigel, and the addition of neutratizing anti-CCL3 antibody would greatly reduce the ability. Therefore, CCL3 may be involved in the control of TAM to degrade matrix. The regulatory mechanism through chemokine system warrants further investigation.
論文指導教授推薦書
論文口試委員審定書
長庚大學博碩士紙本論文著作授權書
誌謝
中文摘要
英文摘要
引言……………………………………………………………………1
材料與方法……………………………………………………………14
結果……………………………………………………………………18
討論……………………………………………………………………25
圖表……………………………………………………………………32
附錄……………………………………………………………………60
參考文獻………………………………………………………………61
1. Anghelina, M., Krishnan, P., Moldovan, L., and Moldovan, N.I. (2004). Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem cells and development 13, 665-676.
2. Anghelina, M., Krishnan, P., Moldovan, L., and Moldovan, N.I. (2006). Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. The American journal of pathology 168, 529-541.
3. Angiolillo, A.L., Sgadari, C., Taub, D.D., Liao, F., Farber, J.M., Maheshwari, S., Kleinman, H.K., Reaman, G.H., and Tosato, G. (1995). Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. The Journal of experimental medicine 182, 155-162.
4. Bach, F., Uddin, F.J., and Burke, D. (2007). Angiopoietins in malignancy. Eur J Surg Oncol 33, 7-15.
5. Balkwill, F., and Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet 357, 539-545.
6. Bamba, H., Ota, S., Kato, A., Adachi, A., Itoyama, S., and Matsuzaki, F. (1999). High expression of cyclooxygenase-2 in macrophages of human colonic adenoma. International journal of cancer 83, 470-475.
7. Ben-Av, P., Crofford, L.J., Wilder, R.L., and Hla, T. (1995). Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS letters 372, 83-87.
8. Biswas, S.K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112-2122.
9. Biswas, S.K., Sica, A., and Lewis, C.E. (2008). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180, 2011-2017.
10. Caivano, M., and Cohen, P. (2000). Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. J Immunol 164, 3018-3025.
11. Cervenak, L., Morbidelli, L., Donati, D., Donnini, S., Kambayashi, T., Wilson, J.L., Axelson, H., Castanos-Velez, E., Ljunggren, H.G., Malefyt, R.D., et al. (2000). Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10. Blood 96, 2568-2573.
12. Chen, M.L., Tsai, C.N., Liang, C.L., Shu, C.H., Huang, C.R., Sulitzeanu, D., Liu, S.T., and Chang, Y.S. (1992). Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein-Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene 7, 2131-2140.
13. Condeelis, J., and Pollard, J.W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263-266.
14. Coussens, L.M., Tinkle, C.L., Hanahan, D., and Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481-490.
15. Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-867.
16. Distler, J.H., Hirth, A., Kurowska-Stolarska, M., Gay, R.E., Gay, S., and Distler, O. (2003). Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 47, 149-161.
17. Egeblad, M., and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature reviews 2, 161-174.
18. Ferrara, N., Gerber, H.P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nature medicine 9, 669-676.
19. Gazzaniga, S., Bravo, A.I., Guglielmotti, A., van Rooijen, N., Maschi, F., Vecchi, A., Mantovani, A., Mordoh, J., and Wainstok, R. (2007). Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. The Journal of investigative dermatology 127, 2031-2041.
20. Giraudo, E., Inoue, M., and Hanahan, D. (2004). An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. The Journal of clinical investigation 114, 623-633.
21. Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Cohen-Daniel, L., Arnon, T.I., Manaster, I., et al. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature medicine 12, 1065-1074.
22. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., Shipley, J.M., Senior, R.M., and Shibuya, M. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer cell 2, 289-300.
23. Huang, S., Van Arsdall, M., Tedjarati, S., McCarty, M., Wu, W., Langley, R., and Fidler, I.J. (2002). Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. Journal of the National Cancer Institute 94, 1134-1142.
24. Huang, Z., and Bao, S.D. (2004). Roles of main pro- and anti-angiogenic factors in tumor angiogenesis. World J Gastroenterol 10, 463-470.
25. Isaka, K., Usuda, S., Ito, H., Sagawa, Y., Nakamura, H., Nishi, H., Suzuki, Y., Li, Y.F., and Takayama, M. (2003). Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta 24, 53-64.
26. Karamysheva, A.F. (2008). Mechanisms of angiogenesis. Biochemistry 73, 751-762.
27. Kerbel, R., and Folkman, J. (2002). Clinical translation of angiogenesis inhibitors. Nature reviews 2, 727-739.
28. Kimura, Y.N., Watari, K., Fotovati, A., Hosoi, F., Yasumoto, K., Izumi, H., Kohno, K., Umezawa, K., Iguchi, H., Shirouzu, K., et al. (2007). Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer science 98, 2009-2018.
29. Kohno, T., Mizukami, H., Suzuki, M., Saga, Y., Takei, Y., Shimpo, M., Matsushita, T., Okada, T., Hanazono, Y., Kume, A., et al. (2003). Interleukin-10-mediated inhibition of angiogenesis and tumor growth in mice bearing VEGF-producing ovarian cancer. Cancer research 63, 5091-5094.
30. Kuwano, T., Nakao, S., Yamamoto, H., Tsuneyoshi, M., Yamamoto, T., Kuwano, M., and Ono, M. (2004). Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. Faseb J 18, 300-310.
31. Lewis, C., and Murdoch, C. (2005). Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. The American journal of pathology 167, 627-635.
32. Lewis, C.E., and Pollard, J.W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer research 66, 605-612.
33. Lewis, J.S., Landers, R.J., Underwood, J.C., Harris, A.L., and Lewis, C.E. (2000). Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. The Journal of pathology 192, 150-158.
34. Li, H., Sim, T.C., Grant, J.A., and Alam, R. (1996). The production of macrophage inflammatory protein-1 alpha by human basophils. J Immunol 157, 1207-1212.
35. Mantovani, A., Allavena, P., Sozzani, S., Vecchi, A., Locati, M., and Sica, A. (2004). Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Seminars in cancer biology 14, 155-160.
36. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in immunology 23, 549-555.
37. Maroof, A., Beattie, L., Zubairi, S., Svensson, M., Stager, S., and Kaye, P.M. (2008). Posttranscriptional regulation of II10 gene expression allows natural killer cells to express immunoregulatory function. Immunity 29, 295-305.
38. Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J., and Hill, A.M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164, 6166-6173.
39. Noonan, D.M., De Lerma Barbaro, A., Vannini, N., Mortara, L., and Albini, A. (2008). Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer metastasis reviews 27, 31-40.
40. Ribatti, D., Nico, B., Crivellato, E., and Vacca, A. (2007). Macrophages and tumor angiogenesis. Leukemia 21, 2085-2089.
41. Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S.K., Doni, A., Rapisarda, A., Bernasconi, S., Saccani, S., Nebuloni, M., Vago, L., et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. The Journal of experimental medicine 198, 1391-1402.
42. Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nature reviews 3, 721-732.
43. Shi, X., Cao, S., Mitsuhashi, M., Xiang, Z., and Ma, X. (2004). Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. J Immunol 172, 4111-4122.
44. Sica, A., Schioppa, T., Mantovani, A., and Allavena, P. (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42, 717-727.
45. Silvestre, J.S., Mallat, Z., Duriez, M., Tamarat, R., Bureau, M.F., Scherman, D., Duverger, N., Branellec, D., Tedgui, A., and Levy, B.I. (2000). Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circulation research 87, 448-452.
46. Soria, G., and Ben-Baruch, A. (2008). The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer letters 267, 271-285.
47. Wu, Y., Li, Y.Y., Matsushima, K., Baba, T., and Mukaida, N. (2008). CCL3-CCR5 axis regulates intratumoral accumulation of leukocytes and fibroblasts and promotes angiogenesis in murine lung metastasis process. J Immunol 181, 6384-6393.
48. Yang, X., Lu, P., Fujii, C., Nakamoto, Y., Gao, J.L., Kaneko, S., Murphy, P.M., and Mukaida, N. (2006). Essential contribution of a chemokine, CCL3, and its receptor, CCR1, to hepatocellular carcinoma progression. International journal of cancer 118, 1869-1876.
49. 林易宣. (2008). The characterization of MIP-1α (CCL3)-producing cells in the EBV-NLMP1 tumor. 長庚大學碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊