|
1. Anghelina, M., Krishnan, P., Moldovan, L., and Moldovan, N.I. (2004). Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem cells and development 13, 665-676. 2. Anghelina, M., Krishnan, P., Moldovan, L., and Moldovan, N.I. (2006). Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. The American journal of pathology 168, 529-541. 3. Angiolillo, A.L., Sgadari, C., Taub, D.D., Liao, F., Farber, J.M., Maheshwari, S., Kleinman, H.K., Reaman, G.H., and Tosato, G. (1995). Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. The Journal of experimental medicine 182, 155-162. 4. Bach, F., Uddin, F.J., and Burke, D. (2007). Angiopoietins in malignancy. Eur J Surg Oncol 33, 7-15. 5. Balkwill, F., and Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet 357, 539-545. 6. Bamba, H., Ota, S., Kato, A., Adachi, A., Itoyama, S., and Matsuzaki, F. (1999). High expression of cyclooxygenase-2 in macrophages of human colonic adenoma. International journal of cancer 83, 470-475. 7. Ben-Av, P., Crofford, L.J., Wilder, R.L., and Hla, T. (1995). Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS letters 372, 83-87. 8. Biswas, S.K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112-2122. 9. Biswas, S.K., Sica, A., and Lewis, C.E. (2008). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180, 2011-2017. 10. Caivano, M., and Cohen, P. (2000). Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. J Immunol 164, 3018-3025. 11. Cervenak, L., Morbidelli, L., Donati, D., Donnini, S., Kambayashi, T., Wilson, J.L., Axelson, H., Castanos-Velez, E., Ljunggren, H.G., Malefyt, R.D., et al. (2000). Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10. Blood 96, 2568-2573. 12. Chen, M.L., Tsai, C.N., Liang, C.L., Shu, C.H., Huang, C.R., Sulitzeanu, D., Liu, S.T., and Chang, Y.S. (1992). Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein-Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene 7, 2131-2140. 13. Condeelis, J., and Pollard, J.W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263-266. 14. Coussens, L.M., Tinkle, C.L., Hanahan, D., and Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481-490. 15. Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-867. 16. Distler, J.H., Hirth, A., Kurowska-Stolarska, M., Gay, R.E., Gay, S., and Distler, O. (2003). Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 47, 149-161. 17. Egeblad, M., and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature reviews 2, 161-174. 18. Ferrara, N., Gerber, H.P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nature medicine 9, 669-676. 19. Gazzaniga, S., Bravo, A.I., Guglielmotti, A., van Rooijen, N., Maschi, F., Vecchi, A., Mantovani, A., Mordoh, J., and Wainstok, R. (2007). Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. The Journal of investigative dermatology 127, 2031-2041. 20. Giraudo, E., Inoue, M., and Hanahan, D. (2004). An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. The Journal of clinical investigation 114, 623-633. 21. Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Cohen-Daniel, L., Arnon, T.I., Manaster, I., et al. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature medicine 12, 1065-1074. 22. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., Shipley, J.M., Senior, R.M., and Shibuya, M. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer cell 2, 289-300. 23. Huang, S., Van Arsdall, M., Tedjarati, S., McCarty, M., Wu, W., Langley, R., and Fidler, I.J. (2002). Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. Journal of the National Cancer Institute 94, 1134-1142. 24. Huang, Z., and Bao, S.D. (2004). Roles of main pro- and anti-angiogenic factors in tumor angiogenesis. World J Gastroenterol 10, 463-470. 25. Isaka, K., Usuda, S., Ito, H., Sagawa, Y., Nakamura, H., Nishi, H., Suzuki, Y., Li, Y.F., and Takayama, M. (2003). Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta 24, 53-64. 26. Karamysheva, A.F. (2008). Mechanisms of angiogenesis. Biochemistry 73, 751-762. 27. Kerbel, R., and Folkman, J. (2002). Clinical translation of angiogenesis inhibitors. Nature reviews 2, 727-739. 28. Kimura, Y.N., Watari, K., Fotovati, A., Hosoi, F., Yasumoto, K., Izumi, H., Kohno, K., Umezawa, K., Iguchi, H., Shirouzu, K., et al. (2007). Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer science 98, 2009-2018. 29. Kohno, T., Mizukami, H., Suzuki, M., Saga, Y., Takei, Y., Shimpo, M., Matsushita, T., Okada, T., Hanazono, Y., Kume, A., et al. (2003). Interleukin-10-mediated inhibition of angiogenesis and tumor growth in mice bearing VEGF-producing ovarian cancer. Cancer research 63, 5091-5094. 30. Kuwano, T., Nakao, S., Yamamoto, H., Tsuneyoshi, M., Yamamoto, T., Kuwano, M., and Ono, M. (2004). Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. Faseb J 18, 300-310. 31. Lewis, C., and Murdoch, C. (2005). Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. The American journal of pathology 167, 627-635. 32. Lewis, C.E., and Pollard, J.W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer research 66, 605-612. 33. Lewis, J.S., Landers, R.J., Underwood, J.C., Harris, A.L., and Lewis, C.E. (2000). Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. The Journal of pathology 192, 150-158. 34. Li, H., Sim, T.C., Grant, J.A., and Alam, R. (1996). The production of macrophage inflammatory protein-1 alpha by human basophils. J Immunol 157, 1207-1212. 35. Mantovani, A., Allavena, P., Sozzani, S., Vecchi, A., Locati, M., and Sica, A. (2004). Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Seminars in cancer biology 14, 155-160. 36. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in immunology 23, 549-555. 37. Maroof, A., Beattie, L., Zubairi, S., Svensson, M., Stager, S., and Kaye, P.M. (2008). Posttranscriptional regulation of II10 gene expression allows natural killer cells to express immunoregulatory function. Immunity 29, 295-305. 38. Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J., and Hill, A.M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164, 6166-6173. 39. Noonan, D.M., De Lerma Barbaro, A., Vannini, N., Mortara, L., and Albini, A. (2008). Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer metastasis reviews 27, 31-40. 40. Ribatti, D., Nico, B., Crivellato, E., and Vacca, A. (2007). Macrophages and tumor angiogenesis. Leukemia 21, 2085-2089. 41. Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S.K., Doni, A., Rapisarda, A., Bernasconi, S., Saccani, S., Nebuloni, M., Vago, L., et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. The Journal of experimental medicine 198, 1391-1402. 42. Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nature reviews 3, 721-732. 43. Shi, X., Cao, S., Mitsuhashi, M., Xiang, Z., and Ma, X. (2004). Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. J Immunol 172, 4111-4122. 44. Sica, A., Schioppa, T., Mantovani, A., and Allavena, P. (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42, 717-727. 45. Silvestre, J.S., Mallat, Z., Duriez, M., Tamarat, R., Bureau, M.F., Scherman, D., Duverger, N., Branellec, D., Tedgui, A., and Levy, B.I. (2000). Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circulation research 87, 448-452. 46. Soria, G., and Ben-Baruch, A. (2008). The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer letters 267, 271-285. 47. Wu, Y., Li, Y.Y., Matsushima, K., Baba, T., and Mukaida, N. (2008). CCL3-CCR5 axis regulates intratumoral accumulation of leukocytes and fibroblasts and promotes angiogenesis in murine lung metastasis process. J Immunol 181, 6384-6393. 48. Yang, X., Lu, P., Fujii, C., Nakamoto, Y., Gao, J.L., Kaneko, S., Murphy, P.M., and Mukaida, N. (2006). Essential contribution of a chemokine, CCL3, and its receptor, CCR1, to hepatocellular carcinoma progression. International journal of cancer 118, 1869-1876. 49. 林易宣. (2008). The characterization of MIP-1α (CCL3)-producing cells in the EBV-NLMP1 tumor. 長庚大學碩士論文
|