跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃一
研究生(外文):Yi Huang
論文名稱:以系統生物學方法尋找MicroRNA所調控之肝癌細胞生長網路
論文名稱(外文):Systems Biology Approach to Identify MicroRNA -mediated Growth-regulatory Networks in Hepatocellular Carcinoma (HCC)
指導教授:周成功
指導教授(外文):C. K. Chou
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:51
中文關鍵詞:肝癌微小核糖核酸系統生物學網控網路
外文關鍵詞:Hepatocellular carcinomaMicroRNASystems biologyRegulatory network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用轉錄體學技術,對肝癌檢體進行全域性基因表現的特徵分析,可以找出與臨床病理特徵相關的基因表現模式,而這項技術已廣泛地應用於臨床診斷及預後症狀的預測上。近來科學家對微小核糖核酸 (microRNA) 表現的特徵分析,已成為一個強而有力的工具來找出在癌細胞中,重要的調控因子。僅管如此,如何經由生物晶片分析的結果,了解基因表現在腫瘤生長調控上的生物意義,仍是一個重大的挑戰。在本研究中,我利用12-O-Tetradecanoylphorbol-13-acetate (TPA)處理HepG2細胞,使細胞會停留在細胞週期中的G1時期。在藥物測試環璄下,差異表現基因和microRNAs (miRs) 也許和肝癌的生長調控有關,而mRNAs和miRs的差異表現,可以分別反映出在轉錄及轉譯上的調控。為了找出特定地被轉錄因子及miRs調控的基因,我們利用系統生物學方法,計算涵蓋轉錄因子、miRs及其目標基因的最短路徑的調控網路。我們認為在癌化過程中,基因的轉錄及轉譯在特定調控網路上會被適度地同時調控。我們的整合性方法能過加強找尋更安全、有效的肝癌治療標靶,並提供一個新的分析方法,找出傳統單獨分析mRNA和miR晶片所忽略的重要因子。
Using transcriptome data to profile the global gene expression has been widely applied to identify genes whose expression pattern is associated with clinical pathological features of tumors which may be used for the diagnosis and prognostic predictions of hepatocellular carcinoma (HCC). Recently, researchers have focused on the expression profiling of microRNAs (miRNAs) to provide more comprehensive results. A significant challenge in the post-genomic era is how to use large-scale and multiple dimensions data to extract and understand the underlying biology of hepatocarcinogenesis. Previous studies indicate that 12-O-Tetradecanoylphorbol-13-acetate (TPA) induce G1 growth arrest in HepG2 cells. Deregulation of growth control mechanism may play a key role in the cancer development. We hypothesize that the genes and miRNAs whose expression altered by TPA treatment may be related to growth control of human hepatoma cells. We proposed that expression level of critical regulatory components in particular networks may be moderately modulated at both transcriptional and translational level during tumorgenesis. In this study, we used a systems biology approach to identify regulatory networks by integrating mRNAs and miRNAs expressions and provide a new dimension of target identification which may be ignored by conventional microarray analysis for mRNAs and miRNAs alone.
TABLE OF CONTENT
中文摘要 IV
ABSTRACT VI
CHAPTER 1. INTRODUCTION - 1 -
CHAPTER 2. MATERIALS AND METHODS - 3 -
2.1 CELL LINES AND PRE-MIRNA TRANSIENT TRANSFECTION - 3 -
2.2. RNA PREPARATION - 3 -
2.3. REVERSE TRANSCRIPTION (RT) - 3 -
2.4. QUANTITATIVE RT-PCR (QRT-PCR) - 4 -
2.5. DATA PRE-PROCESSING - 4 -
2.6. GENE ONTOLOGY SEMANTIC SIMILARITY CLUSTERING ENRICHMENT (GOSIMENRICHMENT) - 5 -
2.7. REGULATORY NETWORK MODELING AND TOPOLOGICAL ANALYSIS - 6 -
CHAPTER 3. RESULTS - 8 -
3.1. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED MRNAS AND MICRORNAS IN HUMAN HCC - 8 -
3.2. FUNCTIONAL ANNOTATION OF SIGNIFICANTLY ENRICHED MIRNA::CLUSTERS - 9 -
3.3. CONSTRUCTION AND VALIDATION OF REGULATORY INTERACTIONS IN THE MICRORNAS-MEDIATED REGULATORY NETWORK - 11 -
CHAPTER 4. DISCUSSION - 13 -
CHAPTER 5. REFERENCES - 16 -


TABLE OF FIGURES
FIGURE 1. AN OVERVIEW OF IN SILICO INTEGRATIVE FRAMEWORK. IN THIS PARALLEL ANALYTIC FRAMEWORK, WE INPUT A LIST OF PUTATIVE MIR-TARGET PAIRS FOR 9 MIRNAS THAT ARE INVERSELY EXPRESSED IN TPA-TREATED HEPG2 CELLS AND HCC SAMPLES. IN ADDITION, WE IMPORTED DIFFERENTIALLY EXPRESSED GENES IN HCC SAMPLES AND CALCULATED THEIR SIMILARITY OF GO TERMS. AFTER FUNCTIONAL CLUSTERING, WE USED TWO-TAILED FISHER’S EXACT TEST TO CALCULATE P-VALUE OF MIRNAS TO EACH CLUSTER AND THEN UPLOADED MIR-ENRICHED CLUSTER TO GENEGO® METACORE™ FOR NETWORK CONSTRUCTION. THEREFORE, WE CAN DEFINE SIGNIFICANT MIR-MEDIATED FUNCTIONAL NETWORKS. - 24 -
FIGURE 2. THE PATTERN OF DIFFERENTIALLY EXPRESSED (DE) MRNAS AND MICRORNAS DISTINGUISH HCC TISSUE SAMPLES AND ADJACENT NORMAL LIVER TISSUE. (A) UNSUPERVISED HIERARCHICAL CLUSTERING OF DE 3845 MRNA PROBES IN 3 PAIRS OF HCC (BLUE) AND ADJACENT NORMAL LIVER (RED) TISSUES. PEARSON’S DISSIMILARITY WAS USED FOR DISTANCE MEASURE AND WARD’S METHOD FOR LINKAGE ANALYSIS IN THE HIERARCHICAL CLUSTERING. (B) UNSUPERVISED HIERARCHICAL CLUSTERING OF 34 DE MIRNAS IN 20 PAIRS OF HCC (BLUE) AND ADJACENT NORMAL LIVER (RED) TISSUES. PEARSON’S DISSIMILARITY WAS USED FOR DISTANCE MEASURE AND WARD’S METHOD FOR LINKAGE ANALYSIS IN THE HIERARCHICAL CLUSTERING. MICRORNA LEVELS WERE EXPRESSED AS 39 – CT AFTER GLOBAL MEDIAN NORMALIZATION. (C) DIFFERENTIALLY EXPRESSION OF MIRNAS IN TPA-TREATED HEPG2 CELLS. THE SCATTER PLOT WAS PERFORMED FOR THE MIRNA LEVELS (39 – CT) OF TPA-TREATED HEPG2 CELLS AND UNTREATED CONTROL. THE RED DOTTED LINES INDICATE THE BOUNDARY OF ONE DCT VALUE. (D) DISTRIBUTION OF THE NUMBER OF DIFFERENT MIRNAS BINDS TO THE UP-REGULATED GENES IN HCC SAMPLES. BLANK BAR INDICATES 9 INVERSELY EXPRESSED MIRNAS BETWEEN TPA-TREATED HEPG2 CELLS AND HCC SAMPLES; THE OTHER INDICATES TESTING DATA-SETS. - 26 -
FIGURE 3. DIFFERENTIALLY EXPRESSED GENES SEPARATED INTO 6 FUNCTIONAL CLUSTERS. (A) DAVIES-BOULDIN (DB) VALUE WAS CALCULATED TO DETERMINE THE OPTIMAL CLUSTER NUMBER. THE BEST CLUSTER NUMBER VALUE (THE LOWEST ONE) WAS TWO. HOWEVER, WE TRIED TO SEPARATE THESE GENES INTO MORE THAN 2 CLUSTERS WITH A LOW DB VALUE. THEREFORE, WE SELECTED THE NEXT LOWEST NUMBER, 6, AS OUR OPTIMAL GROUP NUMBER. (B) PCA ANALYSIS OF THE 6 FUNCTIONAL CLUSTERS. - 28 -
FIGURE 4. THE DISTRIBUTION OF MIR-ENRICHED SCORE IN EACH CLUSTER. THE AREA FILLED WITH WHITE SHOW THE DISTRIBUTION OF ENRICHED SCORE OF INVERSELY EXPRESSED MIRNAS; THE OTHER SHOWS THE NON-SPECIFIC MIRNAS. THE SCORE WERE CALCULATED BY –LOG (P-VALUE) AND THE TICKS ON AXIS INDICATE THAT THE P-VALUE EQUAL TO 0.05. - 30 -
FIGURE 5. THE REGULATORY INTERACTIONS IN THE 3-LAYERED SHORTEST PATH OF MIR-101 WERE EXPERIMENTALLY VALIDATED. (A) THE 3-LAYERED SHORTEST PATH OF MIR-101 WAS VISUALIZED USING CYTOSCAPE. THE HIGH SCORING NODES WERE COLORED BY YELLOW. THE RED AND GREEN LINE INDICATES THE NEGATIVE AND POSITIVE REGULATORY INTERACTION, RESPECTIVELY. (B) PREDICTED MIRNA::MRNA RECOGNITION SITES. (C). QUANTIFICATION OF MIR-101 AND ITS 1ST , 2ND OR 3RD NEIGHBORS IN HEPG2 CELLS AFTER TRANSIENTLY TRANSFECTED WITH EITHER NEGATIVE CONTROL OR PRE-MIR-101. EXPRESSION LEVELS OF MIRNAS WERE EXPRESSED AS 39 – CT. MIR-16 AND MIR-93 WERE INTERNAL CONTROL MIRNAS. THE RESULTS ARE MEAN±S.D. OF TWO INDEPENDENT EXPERIMENTS. (*** P-VALUE < 0.001; ** P-VALUE < 0.01; * P-VALUE < 0.05) - 32 -



TABLE OF TABLES
TABLE 1. 23 DOWN-REGULATED MIRNAS AND 11 UP-REGULATED MIRNAS IN HCC SAMPLES. - 33 -
TABLE 2. THE INVERSELY EXPRESSED MICRORNAS BETWEEN TPA-TREATED HEPG2 CELLS AND HCC SAMPLES. - 35 -
TABLE 3. THE ENRICHED MIRNAS IN CLUSTER III AND VI. - 36 -
TABLE 4. THE MAIN FUNCTION OF CLUSTER III AND VI - 37 -
TABLE 5. THE LIST OF RELEVANT NODES WHOSE SCORE WERE LARGER THAN 3-QUANTILES OF ALL NODES. - 39 -
TABLE 6. EXPRESSION LEVELS OF 1ST, 2ND OR 3RD NEIGHBORS OF MIR-101 IN HCC SAMPLES. - 40 -
1. Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-297.
2. Alvarez-Garcia, I. and Miska, E.A. (2005) MicroRNA functions in animal development and human disease. Development, 132, 4653-4662.
3. Esquela-Kerscher, A. and Slack, F.J. (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 6, 259-269.
4. Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M. et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 101, 2999-3004.
5. Parkin, D.M., Bray, F., Ferlay, J. and Pisani, P. (2005) Global cancer statistics, 2002. CA Cancer J Clin, 55, 74-108.
6. Tsou, A.P., Wu, K.M., Tsen, T.Y., Chi, C.W., Chiu, J.H., Lui, W.Y., Hu, C.P., Chang, C., Chou, C.K. and Tsai, S.F. (1998) Parallel hybridization analysis of multiple protein kinase genes: identification of gene expression patterns characteristic of human hepatocellular carcinoma. Genomics, 50, 331-340.
7. Farazi, P.A. and DePinho, R.A. (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 6, 674-687.
8. Feo, F., Frau, M., Tomasi, M.L., Brozzetti, S. and Pascale, R.M. (2009) Genetic and epigenetic control of molecular alterations in hepatocellular carcinoma. Exp Biol Med (Maywood), 234, 726-736.
9. Murakami, Y., Yasuda, T., Saigo, K., Urashima, T., Toyoda, H., Okanoue, T. and Shimotohno, K. (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 25, 2537-2545.
10. Ura, S., Honda, M., Yamashita, T., Ueda, T., Takatori, H., Nishino, R., Sunakozaka, H., Sakai, Y., Horimoto, K. and Kaneko, S. (2009) Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology, 49, 1098-1112.
11. Su, H., Yang, J.R., Xu, T., Huang, J., Xu, L., Yuan, Y. and Zhuang, S.M. (2009) MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res, 69, 1135-1142.
12. Ladeiro, Y., Couchy, G., Balabaud, C., Bioulac-Sage, P., Pelletier, L., Rebouissou, S. and Zucman-Rossi, J. (2008) MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology, 47, 1955-1963.
13. Pei, Y., Zhang, T., Renault, V. and Zhang, X. (2009) An overview of hepatocellular carcinoma study by omics-based methods. Acta Biochim Biophys Sin (Shanghai), 41, 1-15.
14. Shalgi, R., Lieber, D., Oren, M. and Pilpel, Y. (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol, 3, e131.
15. Hermsen, R., Tans, S. and ten Wolde, P.R. (2006) Transcriptional regulation by competing transcription factor modules. PLoS Comput Biol, 2, e164.
16. Hobert, O. (2004) Common logic of transcription factor and microRNA action. Trends Biochem Sci, 29, 462-468.
17. Wen-Sheng, W. (2006) Protein kinase C alpha trigger Ras and Raf-independent MEK/ERK activation for TPA-induced growth inhibition of human hepatoma cell HepG2. Cancer Lett, 239, 27-35.
18. Wen-Sheng, W. and Jun-Ming, H. (2005) Activation of protein kinase C alpha is required for TPA-triggered ERK (MAPK) signaling and growth inhibition of human hepatoma cell HepG2. J Biomed Sci, 12, 289-296.
19. Wu, W.S., Tsai, R.K., Chang, C.H., Wang, S., Wu, J.R. and Chang, Y.X. (2006) Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Mol Cancer Res, 4, 747-758.
20. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R. et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 33, e179.
21. Reimers, M. and Carey, V.J. (2006) Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol, 411, 119-134.
22. Frohlich, H., Speer, N., Poustka, A. and Beissbarth, T. (2007) GOSim--an R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinformatics, 8, 166.
23. Couto, F.M., M\, \#225, Silva, r.J. and Coutinho, P.M. (2005), Proceedings of the 14th ACM international conference on Information and knowledge management. ACM, Bremen, Germany.
24. Scardoni, G., Petterlini, M. and Laudanna, C. Submitted paper: "CentiScaPe: a Cytoscape plugin for analyzing biological network centralities".
25. John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C. and Marks, D.S. (2004) Human MicroRNA targets. PLoS Biol, 2, e363.
26. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. and Burge, C.B. (2003) Prediction of mammalian microRNA targets. Cell, 115, 787-798.
27. Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P. and Bartel, D.P. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 27, 91-105.
28. Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P. and Bartel, D.P. (2008) The impact of microRNAs on protein output. Nature, 455, 64-71.
29. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T. et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25, 25-29.
30. Esteller, M. (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 8, 286-298.
31. Miremadi, A., Oestergaard, M.Z., Pharoah, P.D. and Caldas, C. (2007) Cancer genetics of epigenetic genes. Hum Mol Genet, 16 Spec No 1, R28-49.
32. Creighton, C.J., Nagaraja, A.K., Hanash, S.M., Matzuk, M.M. and Gunaratne, P.H. (2008) A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA, 14, 2290-2296.
33. Cao, R., Wang, H., He, J., Erdjument-Bromage, H., Tempst, P. and Zhang, Y. (2008) Role of hPHF1 in H3K27 methylation and Hox gene silencing. Molecular and cellular biology, 28, 1862-1867.
34. Squazzo, S.L., O'Geen, H., Komashko, V.M., Krig, S.R., Jin, V.X., Jang, S.W., Margueron, R., Reinberg, D., Green, R. and Farnham, P.J. (2006) Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome research, 16, 890-899.
35. Pasini, D., Bracken, A.P., Hansen, J.B., Capillo, M. and Helin, K. (2007) The Polycomb Group protein Suz12 is required for Embryonic Stem Cell differentiation. Molecular and cellular biology.
36. Ku, M., Koche, R.P., Rheinbay, E., Mendenhall, E.M., Endoh, M., Mikkelsen, T.S., Presser, A., Nusbaum, C., Xie, X., Chi, A.S. et al. (2008) Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains. PLoS genetics.
37. Friedman, J.M., Liang, G., Liu, C.C., Wolff, E.M., Tsai, Y.C., Ye, W., Zhou, X. and Jones, P.A. (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res, 69, 2623-2629.
38. Varambally, S., Cao, Q., Mani, R.S., Shankar, S., Wang, X., Ateeq, B., Laxman, B., Cao, X., Jing, X., Ramnarayanan, K. et al. (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322, 1695-1699.
39. Hu, C.T., Wu, J.R., Chang, T.Y., Cheng, C.C. and Wu, W.S. (2008) The transcriptional factor Snail simultaneously triggers cell cycle arrest and migration of human hepatoma HepG2. J Biomed Sci, 15, 343-355.
40. Sengupta, S., den Boon, J.A., Chen, I.H., Newton, M.A., Stanhope, S.A., Cheng, Y.J., Chen, C.J., Hildesheim, A., Sugden, B. and Ahlquist, P. (2008) MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America.
41. Wang, H., Garzon, R., Sun, H., Ladner, K.J., Singh, R., Dahlman, J., Cheng, A., Hall, B.M., Qualman, S.J., Chandler, D.S. et al. (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14, 369-368.
42. Park, S.Y., Lee, J.H., Ha, M., Nam, J.W. and Kim, V.N. (2008) miR-29 miRNAs activate p53 by targeting p85alpha and CDC42. Nature structural & molecular biology.
43. Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., Liu, S., Alder, H., Costinean, S., Fernandez-Cymering, C. et al. (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America.
44. Yu, D., Tan, A.H., Hu, X., Athanasopoulos, V., Simpson, N., Hutloff, A., Giles, K.M., Leedman, P.J., Lam, K.P., Goodnow, C.C. et al. (2007) Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature, 450, 299-293.
45. Lee, Y., Samaco, R.C., Gatchel, J.R., Thaller, C., Orr, H.T. and Zoghbi, H.Y. (2008) miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci, 11, 1137-1139.
46. De Martino, I., Visone, R., Fedele, M., Petrocca, F., Palmieri, D., J, M.H., Forzati, F., Croce, C.M. and Fusco, A. (2009) Regulation of microRNA expression by HMGA1 proteins. Oncogene.
47. Ferretti, E., De Smaele, E., Miele, E., Laneve, P., Po, A., Pelloni, M., Paganelli, A., Di Marcotullio, L., Caffarelli, E., Screpanti, I. et al. (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. The EMBO journal.
48. Lu, J., Guo, S., Ebert, B.L., Zhang, H., Peng, X., Bosco, J., Pretz, J., Schlanger, R., Wang, J.Y., Mak, R.H. et al. (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Developmental cell, 14, 843-845.
49. Lin, Y.C., Kuo, M.W., Yu, J., Kuo, H.H., Lin, R.J., Lo, W.L. and Yu, A.L. (2008) MiR-150 negatively regulates c-Myb expression, which is evolutionarily conserved and plays an important role in developmental process. Molecular biology and evolution.
50. Ovcharenko, D., Kelnar, K., Johnson, C., Leng, N. and Brown, D. (2007) Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer research, 67, 10782-10788.
51. Zhou, L., Qi, X., Potashkin, J.A., Abdul-Karim, F.W. and Gorodeski, G.I. (2008) Micro-RNAs miR-186 and miR-150 downregulate expression of the pro-apoptotic purinergic P2X7 receptor by activation of instability sites at the 3'-untranslated region of the gene that decrease steady-state levels of the transcript. The Journal of biological chemistry.
52. Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., Xing, R., Sun, Z. and Zheng, X. (2008) miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic acids research.
53. Mellios, N., Huang, H.S., Grigorenko, A., Rogaev, E. and Akbarian, S. (2008) A Set of Differentially Expressed miRNAs, including miR-30a-5p, act as Post-transcriptional Inhibitors of BDNF in Prefrontal Cortex. Human molecular genetics.
54. Lee, D.Y., Deng, Z., Wang, C.H. and Yang, B.B. (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104, 20350-20355.
55. Chen, X., Cheung, S.T., So, S., Fan, S.T., Barry, C., Higgins, J., Lai, K.M., Ji, J., Dudoit, S., Ng, I.O. et al. (2002) Gene expression patterns in human liver cancers. Mol Biol Cell, 13, 1929-1939.
56. Wurmbach, E., Chen, Y.B., Khitrov, G., Zhang, W., Roayaie, S., Schwartz, M., Fiel, I., Thung, S., Mazzaferro, V., Bruix, J. et al. (2007) Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology, 45, 938-947.
57. Rhodes, D.R., Kalyana-Sundaram, S., Mahavisno, V., Varambally, R., Yu, J., Briggs, B.B., Barrette, T.R., Anstet, M.J., Kincead-Beal, C., Kulkarni, P. et al. (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 9, 166-180.
58. Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A. and Chinnaiyan, A.M. (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 6, 1-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊