(18.204.227.34) 您好!臺灣時間:2021/05/19 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳艾瑄
研究生(外文):Ai Shun Wu
論文名稱:探討突變PINK1引起黑質多巴胺神經元病變的分子機轉
論文名稱(外文):Molecular mechanism underlying mutant PINK1-induced degeneration of substantia nigra dopaminergic neurons
指導教授:王鴻利
指導教授(外文):H. L. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:84
中文關鍵詞:帕金森氏症第六型遺傳型隱性帕金森氏症PINK1粒線體
外文關鍵詞:Parkinson's diseasePARK6PINK1Mitochodrial
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
帕金森氏症(Parkinson's disease)是最常見的神經元病變性運動障礙疾病,Phosphatase and tensin homologue (PTEN)-induced kinase 1(PINK1)的誤義突變(missense mutations)及截短突變(truncating mutations)與第六型遺傳型隱性帕金森氏症(PARK6)發病相關,同時PINK1的基因突變是導致早發型隱性帕金森氏症的第二常見主因。PINK1蛋白質主要表現在粒線體並且被認為扮演粒線體絲氨酸/蘇氨酸激酶(Ser/Thr protein kinase)的功能,同時執行神經保護作用對抗不同的細胞壓力。進一步探討突變PINK1所導致黑質多巴胺神經元退化的分子機轉能幫助發展第六型遺傳型帕金森氏症的治療策略。PINK1突變會導致體染色體隱性遺傳(autosomal recessive inheritance)並造成第六型遺傳型隱性帕金森氏症,而這些突變是屬於一個喪失功能(loss-of-function)的突變。因此,PINK1基因剔除鼠是合適的動物模式用以研究第六型遺傳型隱性帕金森氏症之分子病理機轉以及粒線體PINK1的生理功能。在本實驗中,我們已經利用基因標的策略(gene targeting strategy)配養出同型合子(homozygous) PINK1基因剔除鼠。接著,利用PINK1-/-基因剔除鼠的培養黑質多巴胺神經元來探討PINK1在黑質多巴胺細胞粒線體中執行神經保護功能之分子機轉及突變PINK1所引起的神經毒性之分子機轉。
PINK1被認為在於調控粒線體功能上扮演一個重要的角色。因此,我們推測喪失PINK1基因的表現會導致黑質多巴胺神經元的粒線體功能異常,為了證實此假說,我們利用共軛焦影像實驗(confocal microcopy imaging)測定比較正常(Wild-type)老鼠或PINK1-/-基因剔除鼠的培養黑質多巴胺神經元之粒線體膜電位 (mitochondrial membrane potential)、粒線體型態以及氧化活性物(reactive oxygen species)的生成情況。
利用粒線體膜電位螢光染劑TMRM進行共軛焦影像實驗發現,與正常老鼠培養黑質多巴胺神經元相比,PINK1-/-基因剔除鼠的培養黑質多巴胺神經元之TMRM螢光訊號強度明顯降低以及粒線體膜電位出現去極化的現象。藉由螢光染劑MitoTracker Green進行共軛焦影像實驗以觀察比較正常以及PINK1-/-基因剔除鼠黑質多巴胺神經元內粒線體型態,我們發現相較於正常老鼠黑質多巴胺神經元內絲狀(filamentous)、長線狀(long thread-like)的粒線體型態,PINK1-/-基因剔除鼠黑質多巴胺神經元則表現出斷片狀(fragmented)的粒線體。我們利用活性氧化物(reactive oxygen species)螢光染劑MitoSOX進行共軛焦影像實驗發現與正常老鼠的黑質多巴胺神經元比較起來,PINK1-/-基因剔除鼠的多巴胺神經元內基本活性氧化物合成量明顯增加。除此之外,我們也比較觀察到在氧化壓力劑H2O2的刺激下,PINK1-/-基因剔除鼠黑質多巴胺神經元內引發的活性氧化物合成量明顯高過於正常老鼠的黑質多巴胺神經元。
根據我們的實驗結果,在PINK1-/-基因剔除黑質多巴胺神經元內過量表現(overexpression)正常PINK1可以抑制活性氧化物的生成、回復粒線體膜電位以及長線狀的粒線體型態。粒線體膜電位在粒線體中是氧化磷酸化以及離子運輸的主要驅動力,而實驗結果指出在黑質多巴胺神經元中,PINK1對於維持粒線體膜電位是必要性的。同時PINK1也可藉由抑制活性氧化物合成而執行其神經保護的功能。除此之外,PINK1同時參予維持粒線體結構完整性以及調控粒線體分裂(fission)以及融合(fusion)。
相較於過量表現正常PINK1,在PINK1-/-基因剔除黑質多巴胺神經元內過量表現第六型遺傳型隱性帕金森氏症突變 (G309D), (E417G)或C端截短 (C delta 145) PINK1則失去挽救粒線體功能異常的功能以及抑制氧化壓力生成的能力。我們的實驗結果提出導致第六型遺傳型隱性帕金森氏症喪失功能的PINK1突變會造成粒線體功能異常以及氧化壓力上升進而導致黑質多巴胺神經元產生神經毒性。
Parkinson’s disease (PD) is the most common neurodegenerative motor disorder. Missense or truncating mutations of phosphatase and tesin homologue (PTEN)-induced kinase 1 (PINK1) gene are implicated in the pathogenesis of familial type 6 of Parkinson’s disease (PARK6) and that PINK1 is the second most frequent causative gene in early-onset Parkinson’s disease. PINK1 protein is mainly expressed in the mitochondria and has been proposed to function as a mitochondrial Ser/Thr protein kinase and exert neuroprotective effects against various cellular stresses. Better understanding the molecular basis of mutant PINK1-induced degeneration of substantia nigra (SN) dopaminergic neurons could lead to the development of effective PARK6 therapy. The autosomal recessive inheritance mode indicates a loss-of-function caused by PINK1 mutations is involved in the pathogenesis of PARK6. Thus, PINK1-deficient mice should be a valuable animal model to investigate the molecular pathogenesis of PARK6 and physiological functions of mitochondrial PINK1. In the present study, we have generated homozygous PINK1-/- mice using gene targeting strategy. Subsequently, primary SN dopaminergic neuronal culture of PINK1-null mice was prepared to study molecular mechanisms by which PINK1 exerts its neuroprotective effect within mitochondria and mutant PINK1 induces neurotoxicity of SN dopaminergic cells.
PINK1 is believed to play an important role in regulating mitochondrial functions. Therefore, absence of PINK1 expression is likely to cause mitochondrial dysfunction of SN dopaminergic neurons. To test this hypothesis, confocal microcopy imaging was performed to visualize mitochondrial membrane potential, mitochondrial morphology and ROS (reactive oxygen species) formation of cultured SN dopaminergic neurons prepared from wild-type or PINK1-/- mice.
Confocal imaging of potential sensitive dye tetramethylrhodamine methyl (TMRM) indicated that compared to cultured wild-type SN dopaminergic cells, a significant reduction in TMRM fluorescent signal and depolarized mitochondrial membrane potential was observed from SN dopaminergic neurons of PINK1-/- mice. Confocal MitoTracker Green staining was performed to visualize mitochondrial morphology of wild-type or PINK1-/- SN dopaminergic neurons. In contrast to filamentous and long thread-like mitochondria of wild-type SN dopaminergic neurons, fragmented mitochondria were observed from PINK1-deficient SN dopaminergic neurons. Compared to wild-type SN dopaminergic neurons, basal level of mitochondrial ROS formation, visualized by confocal MitoSOX staining, was significantly increased in PINK1-deficient SN dopaminergic neurons. Besides, the oxidative stressor H2O2-induced ROS production was greatly augmented in PINK1-null dopaminergic neurons than wild-type dopaminergic neurons.
Our results indicate that PINK1 is required for maintaining mitochondrial membrane potential of SN dopaminergic neurons, which is the driving force behind oxidative phosphorylation and ion transportation, and exerts neuroprotective effects by inhibiting ROS formation. PINK1 is also involved in maintaining the structural integrity and modulating fission-fusion of mitochondria.
Overexpression of wild-type PINK1 inhibited ROS formation, restored mitochondrial membrane potential and thread-like morphology of mitochondria in PINK1-deficient SN dopaminergic neurons. In contrast to wild-type PINK1, overexpression of PARK6 mutant (G309D), (E417G) or C-terminal truncated (C delta 145) PINK1 failed to rescue mitochondrial dysfunction and inhibit oxidative stress in PINK1-null SN dopaminergic cells. Our results provide the evidence that loss-of-function PARK6 mutation of PINK1 causes mitochondrial dysfunction, elevated oxidative stress and resulting neurotoxicity of SN dopaminergic cells.
Abstract (Chinese) v
Abstract (English) viii
Abbreviations xi
Contents xii
Ⅰ. Introduction 1
Ⅱ. Specific aims 10
Ⅲ. Methods and Materials 11
3.1 Construction of PINK1 knockout target vector and
generation of PINK1-deficient mice 11
3.2 Identification of PINK1-/- mice by Southern
blotting or PCR analysis of tail DNA 11
3.3 Northern blot analysis of PINK1 mRNA expression 12
3.4 RT-PCR analysis of PINK1 mRNA expression 13
3.5 Preparation of cultured substantia nigra neurons 13
3.6 Construction of point mutant or truncated PINK1 14
3.7 Preparation of recombinant adenoviruses 15
3.8 Confocal imaging of mitochondrial membrane
potential and reactive oxygen species (ROS)
formation in cultured substantia nigra (SN)neurons 16
3.9 Mitochondrial morphology 17
3.10 Stereological count of substantia nigra
dopaminergic neurons 17
3.11 Behavioral tests 18
3.12 Statistics 18
Ⅳ. Results 19
4.1 Generation of PINK1-defecient mice 19
4.2 Loss of PINK1 impairs mitochondrial function of
substantia nigra dopaminergic neurons by causing
a depolarization of mitochondrial membrane
potential 20
4.3 PINK1 deficiency leads to mitochondrial
fragmentation in substantia nigra dopaminergic
neurons 22
4.4 Loss of PINK1 increases basal level of reactive
oxygen species (ROS) and augments oxidative stress
in substantia nigra dopaminergic neurons 23
4.5 PINK1-deficient mice failed to exhibit the
symptoms of motor dysfunction and degeneration
of substantia nigra dopaminergic neurons 24
Ⅴ. Discussion 26
Ⅵ. References 35
Ⅶ. Figures 47
Abou-Sleiman P.M., Muqit M.M.K. and Wood N.W. (2006)
Expanding insights of mitochondrial dysfunction in
Parkinson’s disease. Nature Rev. Neurosci., 7, 207-219.
Anichtchik O., Diekmann H., Fleming A., Roach A., Goldsmith
P., Rubinsztein D.C. (2008) Loss of PINK1 function affects
development and results in neurodegeneration in zebrafish.
J Neurosci, 28, 8199-8207.
Beilina A., Van Der Brug M., Ahmad R., Kesavapany S.,
Miller D.W., Petsko G.A. and Cookson M.R. (2005) Mutations
in PTEN-induced putative kinase 1 associated with
recessive Parkinsonism have differential effects on
protein stability. Proc. Natl. Acad. Sci. USA, 102, 5703-
5708.
Benard G. and Rossignol R. (2008) Ultrastructure of the
Mitochondrion and Its Bearing on Function and
Bioenergetics. ANTIOXIDANTS & REDOX SIGNALING, 10, 1313-
1342.
Biskup S., Moore D.J., Celsi F., Higashi S., West A.B.,
Andrabi S.A., Kurkinen K., Yu S.W., Savitt J.M., Waldvogel
H.J., Faull R.L., Emson P.C., Torp R., Ottersen O.P.,
Dawson T.M., Dawson V.L. (2006) Localization of LRRK2 to
membranous and vesicular structures in mammalian brain.
Ann Neurol, 60, 557-69.
Bonifati V., Rizzu P., van Baren M.J., Schaap O., Breedveld
G.J., Krieger E., Dekker M.C., Squitieri F., Ibanez P.,
Joosse M., van Dongen J.W., Vanacore N., van Swieten J.C.,
Brice A., Meco G., van Duijn C.M., Oostra B.A. and Heutink
P. (2003) Mutations in the DJ-1 gene associated with
autosomal recessive early-onset parkinsonism. Science,
299, 256-259.
Bonifati V., Rohe C. F., Montagna P., Breedveld G.,
Fabrizio E., De Mari M., Tassorelli C., Tavella A.,
Marconi E., Nicholl D.J., Chien H.F., Fincati E.,
Abbruzzese G., Marini P., De Gaetano A., horstink M.W.,
Maat-Kievit J.A., Sampaio C., Antonino A., Stocchi F.,
Montagna P., Toni V., Guidi M., Dalla Libera A., Tinazzi
M., De Pandis F., Fabbrini G., Goldwurm S., De Klein A.,
Barbosa E., Lopoano L., Martignoni E., Lamberti P.,
Vanacore N., Meco G., and Oostra B.A (2005) Early-onset
parkinsonism associated with PINK1 mutations: frequency,
genotypes, and phenotypes. Neurology, 65, 87-95.
Bossy-Wetzel E., Barsoum M.J., Godzik A., Schwarzenbacher
R., Lipton S.A. (2003) Mitochondrial fission in apoptosis,
neurodegeneration and aging. Curr Opin Cell Biol, 15, 706-
716.
Canet-Aviles R.M., Wilson M.A., Miller D.W., Ahmad R.,
McLendon C., Bandyopadhyay S., Baptista M.J., Ringe D.,
Petsko G.A. amd Cooksn M.R. (2004) The Parkinson’s
disease protein DJ-1 is neuroprotective due to cysteine-
sulfinic acid-driven mitochondrial localization. Proc.
Natl. Acad. Sci. USA, 101, 9103-9108.
Chan D.C. (2006) Mitochondrial fusion and fission in
mammals. Annu Rev Cell Dev Biol, 22, 79-99.
Chou A.H., Yeh T.H., Kuo Y.L., Kao Y.C., Jou M.J., Hsu
C.Y., Tsai S.R., Kakizuka A. and Wang H.L. (2006)
Polyglutamine-expanded ataxin-3 activates mitochondrial
apoptotic pathway by upregulating Bax and downregulating
Bcl-xL. Neurobiology of Disease, 21, 333-345.
Chou A.H., Yeh T.H., Ouyang P., Chen Y.L., Chen S.Y., Wang
H.L. (2008) Polyglutamine-expanded ataxin-3 causes
cerebellar dysfunction of SCA3 transgenic mice by inducing
transcriptional dysregulation. Neurobiol Dis, 31, 89-101.
Clark I.E., Dodson M.W., Jiang C., Cao J.H., Huh J.R.
(2006) Drosophila pink1 is required for mitochondrial
function and interacts genetically with parkin. Nature,
441, 1162–1166.
Clayton R., Clark J.B., Sharpe M. (2005) Cytochrome c
release from rat brain mitochondria is proportional to the
mitochondrial functional deficit: implications for
apoptosis and neurodegenerative disease. J Neurochem, 92,
840-849.
Cookson M.R., Xiromerisiou G. and Singleton A. (2005) How
genetics research in Parkinson’s disease is enhancing
understanding of the common idiopathic forms of the
disease. Current Opinion in Neurology, 18, 706-711.
Dagda R.K., Cherra S.J., Kulich S.M., Tandon A., Park D.,
Chu C. (2009) Loss of pink1 function promotes mitophagy
through effects on oxidative stress and mitochondrial
fission. J Biol Chem, 284, 13843-13855.
Dawson T.M. and Dawson V.L. (2003) Molecular pathways of
neurodegeneration in Parkinson’s disease. Science, 302,
819-822.
Exner N., Treske B., Paquet D., Holmstrom K., Schiesling
C., Gispert S., Carbajal I.C., Berg D., Hoepken H.H.,
Gasser T., Kruger R., Winklhofer K.F., Vogel F., Reichert
A.S., Auburger G., Kahle P., and Schmid B. (2007) Loss-of-
function of human PINK1 results in mitochondrial pathology
and can be rescued by parkin. J Neurosci, 27, 12413–12418.
Gandhi S. and Wood N. W. (2005) Molecular pathogenesis of
Parkinson’s disease. Human Mol. Genet, 14, 2749-2755.
Gandhi S, Muqit M.M., Stanyer L., Healy D.G., Abou-Sleiman
P.M., Hargreaves I., Heales S., Ganguly M., Parsons L.,
Lees A.J., Latchman D.S., Holton J.L., Wood N.W., Revesz
T. (2006) PINK1 protein in normal human brain and
Parkinson's disease. Brain, 129, 1720-1731.
Gautier C.A., Kitada T., Shen J. (2008) Loss of PINK1 causes
mitochondrial functional defects and increased
sensitivityto oxidative stress. Proc Natl Acad Sci U S A,
105, 11364–11369.
Grünewald A., Gegg M.E., Taanman J.-W., King R.H., Kock N.,
Klein C., Schapira A.H.V. (2009) Differential effects of
PINK1 nonsense and missense mutations on mitochondrial
function and morphology. Experimental Neurology.
Green D.R. (2005) Apoptotic pathways: ten minutes to dead.
Cell, 121, 671-674.
Gloeckner C.J., Kinkl N., Schumacher A., Braun R.J.,
O'Neill E., Meitinger T., Kolch W., Prokisch H., Ueffing
M. (2006) The Parkinson disease causing LRRK2 mutation
I2020T is associated with increased kinase activity. Hum
Mol Genet, 15, 223-32.
Gottlieb R.A. (2001) Mitochondria and apoptosis. Biol
Signals Recept, 10, 147-161.
Hatano Y., Li Y., Sato K., Asakawa S., Yamamura Y.,
Tomiyama H., Yoshino H., Asahina M., Kobayashi S., Hassin-
Baer S., Lu C. S., Ng A. R., Rosales R. L., Shimizu N.,
Toda T., Mizuno Y. and Hattori N. (2004) Novel PINK1
mutations in early-onset Parkinsonism. Ann. Neurol, 56,
424- 427.
Henchcliffe C. and Beal M.F. (2008) Mitochondrial biology
and oxidative stress in Parkinson disease pathogenesis.
Nature, 4, 601-609.
Hoepken H.H., Gispert S., Morales B., Wingerter O., Del
Turco D., Mulsch A., Nussbaum R.L., Muller K., Drose S.,
Brandt U., Deller T., Wirth B., Kudin A.P., Kunz W.S.,
Auburger G. (2007) Mitochondrial dysfunction, peroxidation
damage and changes in glutathione metabolism in PARK6.
Neurobiol. Dis, 25, 401–411.
Ibanez P., Lesage S., Lohmann E., Thobois S., De Michele
G., Borg M., Agid Y., Durr A. and Brice A. (2006)
Mutational analysis of the PINK1 gene in early-onset
parkinsonism in Europe and north Africa. Brain, 129, 686-
694.
Junn E., Taniguchi H., Jeong B.S., Zhao X., Ichijo H. and
Mouradian M.M. (2005) Interaction of DJ-1 with Daxx
inhibits apoptosis signal-regulating kinase 1 activity and
cell death. Proc. Natl. Acad. Sci. USA, 102, 9691-9696.
Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura
Y., Minoshima S., Yokochi M., Mizuno Y. and Shimizu N.
(1998) Mutations in the parkin gene cause autosomal
recessive juvenile parkinsonism. Nature, 302, 605-608.
Kitada T., Pisani A., Porter D.R., Yamaguchi H., Tscherter
A. (2007) Impaired dopamine release and synaptic
plasticity in the striatum of PINK1-deficient mice. Proc
Natl Acad Sci U S A.
Knott A.B., Perkins G., Schwarzenbacher R., and Wetzel E.B.
(2008) Mitochondrial fragmentation in neurodegeneration.
Nature, 9, 505-518.
Kroemer G. and Reed J.C. (2000) Mitochondrial control of
cell death. Nature Med, 6, 513-519.
Kuroda Y., Mitsui T., Kunishige M., Matsumoto T. (2006a)
Parkin affects mitochondrial function and apoptosis in
neuronal and myogenic cells. Biochem Biophys Res Commun,
348, 787-793.
Kuroda Y., Mitsui T., Kunishige M., Shono M., Akaike M.,
Azuma H., Matsumoto T. (2006b) Parkin enhances
mitochondrial biogenesis in proliferating cells. Hum Mol
Genet, 15, 883-95.
Li Y.P., Magrane´ J., Stavarache M.A., Shaffer S., Chang
S., Kaplitt M.G., Huang X.Y., Beal M.F., Manfredi G., Li
C. (2009) PINK1 Defect Causes Mitochondrial Dysfunction,
Proteasomal Deficit and a-Synuclein Aggregation in Cell
Culture Models of Parkinson’s Disease. PLoS One, 4, e4597.
Liu W., Vives-Bauza C., Acín-Peréz- R., Yamamoto A., Tan
Y., Li Y., Magrané J., Stavarache M.A., Shaffer S., Chang
S., Kaplitt M.G., Huang X.Y., Beal M.F., Manfredi G., Li
C. (2009) PINK1 defect causes mitochondrial dysfunction,
proteasomal deficit and alpha-synuclein aggregation in
cell culture models of Parkinson's disease. PLoS One, 4,
e4597.
Martinou J.C. and Green D.R. (2000) Breaking the
mitochondrial barrier. Nature Rev. Mol. Cell Biol, 2, 63-
67.
Mitsumoto A. and Nakagawa Y. (2001) DJ-1 is an indicator
for endogenous reactive oxygen species elicited by
endotoxin. Free Radic. Res, 35, 885-893.
Moore D.J., West A.B., Dawson V.L. and Dawson T.M. (2005)
Molecular pathology of Parkinson’s disease. Annual Review
of Neuroscience, 28, 57-87.
Nijhawan D., Honarpour N. and Wang X. (2000) Apoptosis in
neural development and disease. Ann. Rev. Neurosci, 23, 73-
87.
Park J., Lee S.B., Lee S., Kim Y., Song S. (2006)
Mitochondrial dysfunction in Drosophila PINK1 mutants is
complemented by parkin. Nature, 441, 1157–1161.
Park S.S., Zhao H., Mueller R.A. and Xu Z. (2006)
Bradykinin prevents reperfusion injury by targeting
mitochondrial permeability transition pore through
glycogen synthase kinase 3beta. J. Mol. Cell Cardiol, 28,
340-350.
Palacino J.J., Sagi D., Goldberg M.S., Krauss S., Motz C.,
Wacker M., Klose J., Shen J. (2004) Mitochondrial
dysfunction and oxidative damage in parkin-deficient mice.
J Biol Chem, 279, 18614-18622.
Petit A., Kawaeai T., Paitel E., Sanjo N., Mai. M., Scheid
M., Chen F., Gu Y., Hasegawa H., Salei-Rad., Wang L.,
Rogaeva E., Fraser P., Robinson B., George-Hyslop P. and
Tandon A. (2005) Wild-type PINK1 prevents basal and
induced neuronal apoptosis, a protective effect abrogated
by Parkinson disease-related mutations. J. Biol. Chem,
280, 34025-34032.
Piccoli C., Sardanelli A., Scrima R., Ripoli M., Quarato
G., D'Aprile A., Bellomo F., Scacco S., De Michele G.,
Filla A., Iuso A., Boffoli D., Capitanio N., Papa S.
(2008) Mitochondrial respiratory dysfunction in familiar
parkinsonism associated with PINK1 mutation. Neurochem.
Res, 33, 2565–2574.
Polymeropoulos M.H., Lavedan C., Leroy E, Ide S.E., Dehejia
A., Dutra A., Pike B., Root H., Rubenstein J, Boyer R.,
Stenroos E.S., Chandrasekharappa s., Athanassiadou A,
Papapetropoulos T., Johnson W.G., Lazzarini A.M., Duvoisin
R.C., Di Iorio G, Golbe L.I., and Nussbaum R.L. (1997)
Mutation in the -synuclein gene identified in families
with Parkinson's disease. Science, 276, 2045-2047
Pridgeon J.W., Olzmann J.A., Chin L.S., Li L. (2007) PINK1
Protects against Oxidative Stress by Phosphorylating
Mitochondrial Chaperone TRAP1. PLoS Biol, 5, e172.
Przedborski S. and Vila M. (2003) The 1-methyl- 4- phenyl-
,2,3,6- tetrahydropyridine mouse model: a tool to explore
the pathogenesis of Parkinson's disease. Ann N Y Acad Sci,
991, 189-198.
Rogaeva E., Johnson J., Lang A.E., Culick C., Gwinn-Hardy
K., Kawarai T., Sato C., Morgan A., Werner J., Nussbaum
R., Petit A., Okun M.S., McLnerney A., Mandel R., Groen
J.L., Fernandez H.H., Postuma R., Foote K.S., Salehi-Rad
S., Liang Y., Reimsnider S., Tandon A., Hardy J., St
George-Hyslop P. and Singleton A.B. (2005) Analysis of the
PINK1 gene in a large cohort of cases with Parkinson
disease. Ann. Neurol, 61, 1898-1904.
Rohe C. F., Montagna P., Breedveld G., Cortelli P., Oostra
B. A. and Bonifati V. (2004) Homozygous PINK1 mutation
causing early-onset Parkinsonism. Ann. Neurol, 56, 427-431.
Sandebring A., Thomas K.J., Beilina A., Brug M.V.D.,
Cleland M.M., Ahmad R., Miller D.W., Zambrano I., Cowburn
R.F., Behbahani H., Minguez A.C., Cookson M.R. (2009)
Mitochondrial alterations in PINK1 deficient cells are
influenced by calcineurin-dependent dephosphorylation of
dynamin-related protein 1. PLoS ONE, 4, e5701.
Schapira A.H., Cooper J.M., Dexter D., Clark J.B., Jenner
P., Marsden C.D. (1990) Mitochondrial complex I deficiency
in Parkinson’s disease. J Neurochem, 54, 823-827.
Shen J. and Cookson M.R. (2004) Mitochondria and dopamine:
New insights into recessive Parkinsonism. Neuron, 43, 301-
304.
Shimura H., Hattori N., Kobo S., Mizuno Y., Asakawa S.,
Minoshima S., Shimizu N., Iwai K., Chiba T., Tanaka K. and
Suzuki T. (2000) Familial Parkinson disease gene product,
parkin, is a ubiquitin-protein ligase. Nature Genet, 25,
302-305.
Silvestri L., Caputo V., Bellacchio E., Atorino L.,
Dallapiccola B., Valente E. M. and Casari G. (2005)
Mitochondrial import and enzymatic activity of PINK1
mutants associated to recessive parkinsonism. Human Mol.
Genet, 14, 3477-3492.
Sim C.H., Lio D.S., Mok S.S., Masters C.L., Hill A.F.,
Culvenor J.G. and Cheng H.C. (2006) C-terminal truncation
and Parkinson’s disease- associated mutations down-
regulate the protein serine/threonine kinase
activity of PTEN-induced kinase-1. Hum. Mol.Genet, 15,
3251-3262.
Smith W.W., Pei Z., Jiang H., Moore D.J., Liang Y., West
A.B., Dawson V.L., Dawson T.M. and Ross C.A. (2005)
Leucine-rich repeat kinase 2 (LRRK2) interacts with
parkin, and mutant LRRK2 induces neuronal degeneration.
Proc. Natl. Acad. Sci. USA, 102, 18676-18691.
Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q.,
Jakes R. and Goedert M. (1997) α-Synuclein in Lewy bodies.
Nature, 388, 839-840.
Tan E.K., Yew K., Chua E., Puvan K., Shen H., Lee E., Puong
K.Y., Zhao Y., Pavanni R., Wong M.C., Jamora D., de Silva
D., Moe K.T., Woon F.P., Yuen Y. and Tan L. (2006) PINK1
mutations in sporadic early-onset Parkinson’s disease.
Mov. Disord, 29, 418-425.
Taira T., Saito Y., Niki T., Iguchi-Ariga S.M., Takahashi
K., Ariga H. (2004) DJ-1 has a role in antioxidative
stress to prevent cell death. EMBO, 2, 213-218.
Thomas B. and Beal M.F. (2007) Parkinson's disease. Hum Mol
Genet, 16, R183-194.
Unoki M. and Nakamura Y. (2001) Growth-suppressive effects
of BPOZ and EGR2, two genes involved in the PTEN signaling
pathway. Oncogene, 20, 4457-4465.
Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M.
K., Harvey K., Gispert S., Ali Z., Turco D. D.,
Bentivoglio A. R., Healy D. G., Albanese A., Nussbaum R.,
Gonzalez-Maldonado R., Deller T., Salvi S., Cortelli P.,
Gilks W. P., Latchman D. S., Harvey R. J., Dallapiccola
B., Auburger G., and Wood N. W. (2004a) Hereditary early-
onset Parkinson’s disease caused by mutations in PINK1.
Science, 304, 1158-1160.
Valente E. M., Bentivoglio A. R., Dixon P.H., Ferraris A.,
Ialongo T., Fraontali M., Albanese A., and Wood N. W.
(2001) Localization of a novel locus for autosomal
recessive early-onset parkinsonism, PARK6, on human
chromosome 1p35-p36. Am. J. Hum. Genet, 68, 895-900.
Valente E. M., Salvi S., Ialongo T., Marongiu R., Elia
A.E., Caputo V., Romito L., Albanese A., Dallapiccola B.
and Bentivoglio A. R. (2004b) PINK1 mutations are
associated with sporadic early-onset parkinsonism. Ann.
Neurol, 56, 337-341.
Wang H.L., Chang W. T., Hsu C.Y., Huang P. C., Chow Y.W.
and Li A. (2002) Identification of two C-terminal amino
acids, Ser355 and Thr357, required for short-term
homologous desensitization of -opioid receptors.
Biochem. Pharmacol, 64, 257-266.
Wang H.L., Hsu C.Y., Huang P.C., Kuo Y.L., Li A., Yeh T.H.,
Tso A.S. and Chen Y.L. (2005) Heterodimerization of opioid
receptor-like 1 and m-opioid receptors impairs the potency
of m receptor agonist. J. Neurochem., 92, 1285-1294.
Wang H.L., Yeh T.H., Chou A.H., Kuo Y.L., Luo L.J., He
C.Y., Huang P.C. and Li A.H. (2006) Polyglutamine-expanded
ataxin-7 activates mitochondrial apoptotic pathway of
cerebellar neurons by upregulating Bax and downregulating
Bcl-xL. Cellular Signalling, 18, 541-552.
Wang H,L., Chou A,H., Yeh T.H., Li A.H., Chen Y.L., Kuo
Y.L., Tsai S.R., Yu S.T. (2007) PINK1 mutants associated
with recessive Parkinson's disease are defective in
inhibiting mitochondrial release of cytochrome c.
Neurobiol Dis, 28, 216-226.
Weintraub D., Comella C.L., and Horn S. (2008) Parkinson’s
disease—Part 1: Pathophysiology, Symptoms, Burden,
Diagnosis, and Assessment. Am J Manag Care, 14, S40-S48.
West A.B., Moore D.J., Biskup S., Bugayenko A., Smith W.W.,
Ross C.A., Dawson V.L., Dawson T.M. (2005) Parkinson's
disease-associated mutations in leucine-rich repeat kinase
2 augment kinase activity. Proc Natl Acad Sci U S A. 102,
16842-16847.
Wood-Kaczmar A., Gandhi S., and Wood N.W. (2006)
Understanding the molecular causes of Parkinson’s
disease. TRENDS in Molecular Medicine, 12, 521-528.
Wood-Kaczmar A., Gandhi S., Yao Z., Abramov A.S., Miljan
E.A., Keen G., Stanyer L., Hargreaves L., Klupsch K., Deas
E., Downward J., Mansfield L., Jat P., Taylor J., Heales
S., Duchen M.R., Latchman D., Tabrizi S.J., and Wood N.W.
(2008) PINK1 is necessary for long term survival and
mitochondrial function in human dopaminergic neurons. PLoS
ONE, 3, e2455.
Yang Y., Ouyang Y., Yang L., Beal M.F., McQuibban A., Vogel
H., and Lu B. (2008) Pink1 regulates mitochondrial
dynamics through interaction with the fission/fusion
machinery. Proc Natl Acad Sci U S A, 105, 7070–7075.
Zimprich A., Biskup S., Leitner P., Lichtner P, Farrer M.,
Lincoln S., Kachergus J., Hulihan M., Uitti R.J., Calne
D.B., Stoessl A.J., Pfeiffer R.F, Patenge N., Carbajal
I.C., Vieregge P., Asmus F., Müller-Myhsok B., Dickson
D.W., Meitinger T., Strom TM, Wszolek Z.K. and Gasser T.
(2004) Mutations in LRRK2 cause autosomal-dominant
parkinsonism with pleomorphic pathology. Neuron, 44, 601-
607.
Zhang L., Shimoji M., Thomas B., Moore D.J., Yu SW.,
Marupudi N.I., Torp R., Torgner I.A., Ottersen O.P.,
Dawson T.M., Dawson V.L. (2005) Mitochondrial localization
of the Parkinson's disease related protein DJ-1:
implications for pathogenesis. Hum Mol Genet, 14, 2063-73.
Zoghbi H.Y. and Botas J. (2002) Mouse and fly models of
neurodegeneration. Trends in Genet, 18, 463-471.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top