|
Abou-Sleiman P.M., Muqit M.M.K. and Wood N.W. (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nature Rev. Neurosci., 7, 207-219. Anichtchik O., Diekmann H., Fleming A., Roach A., Goldsmith P., Rubinsztein D.C. (2008) Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. J Neurosci, 28, 8199-8207. Beilina A., Van Der Brug M., Ahmad R., Kesavapany S., Miller D.W., Petsko G.A. and Cookson M.R. (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive Parkinsonism have differential effects on protein stability. Proc. Natl. Acad. Sci. USA, 102, 5703- 5708. Benard G. and Rossignol R. (2008) Ultrastructure of the Mitochondrion and Its Bearing on Function and Bioenergetics. ANTIOXIDANTS & REDOX SIGNALING, 10, 1313- 1342. Biskup S., Moore D.J., Celsi F., Higashi S., West A.B., Andrabi S.A., Kurkinen K., Yu S.W., Savitt J.M., Waldvogel H.J., Faull R.L., Emson P.C., Torp R., Ottersen O.P., Dawson T.M., Dawson V.L. (2006) Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol, 60, 557-69. Bonifati V., Rizzu P., van Baren M.J., Schaap O., Breedveld G.J., Krieger E., Dekker M.C., Squitieri F., Ibanez P., Joosse M., van Dongen J.W., Vanacore N., van Swieten J.C., Brice A., Meco G., van Duijn C.M., Oostra B.A. and Heutink P. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256-259. Bonifati V., Rohe C. F., Montagna P., Breedveld G., Fabrizio E., De Mari M., Tassorelli C., Tavella A., Marconi E., Nicholl D.J., Chien H.F., Fincati E., Abbruzzese G., Marini P., De Gaetano A., horstink M.W., Maat-Kievit J.A., Sampaio C., Antonino A., Stocchi F., Montagna P., Toni V., Guidi M., Dalla Libera A., Tinazzi M., De Pandis F., Fabbrini G., Goldwurm S., De Klein A., Barbosa E., Lopoano L., Martignoni E., Lamberti P., Vanacore N., Meco G., and Oostra B.A (2005) Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology, 65, 87-95. Bossy-Wetzel E., Barsoum M.J., Godzik A., Schwarzenbacher R., Lipton S.A. (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol, 15, 706- 716. Canet-Aviles R.M., Wilson M.A., Miller D.W., Ahmad R., McLendon C., Bandyopadhyay S., Baptista M.J., Ringe D., Petsko G.A. amd Cooksn M.R. (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine- sulfinic acid-driven mitochondrial localization. Proc. Natl. Acad. Sci. USA, 101, 9103-9108. Chan D.C. (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol, 22, 79-99. Chou A.H., Yeh T.H., Kuo Y.L., Kao Y.C., Jou M.J., Hsu C.Y., Tsai S.R., Kakizuka A. and Wang H.L. (2006) Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiology of Disease, 21, 333-345. Chou A.H., Yeh T.H., Ouyang P., Chen Y.L., Chen S.Y., Wang H.L. (2008) Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol Dis, 31, 89-101. Clark I.E., Dodson M.W., Jiang C., Cao J.H., Huh J.R. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441, 1162–1166. Clayton R., Clark J.B., Sharpe M. (2005) Cytochrome c release from rat brain mitochondria is proportional to the mitochondrial functional deficit: implications for apoptosis and neurodegenerative disease. J Neurochem, 92, 840-849. Cookson M.R., Xiromerisiou G. and Singleton A. (2005) How genetics research in Parkinson’s disease is enhancing understanding of the common idiopathic forms of the disease. Current Opinion in Neurology, 18, 706-711. Dagda R.K., Cherra S.J., Kulich S.M., Tandon A., Park D., Chu C. (2009) Loss of pink1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem, 284, 13843-13855. Dawson T.M. and Dawson V.L. (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science, 302, 819-822. Exner N., Treske B., Paquet D., Holmstrom K., Schiesling C., Gispert S., Carbajal I.C., Berg D., Hoepken H.H., Gasser T., Kruger R., Winklhofer K.F., Vogel F., Reichert A.S., Auburger G., Kahle P., and Schmid B. (2007) Loss-of- function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci, 27, 12413–12418. Gandhi S. and Wood N. W. (2005) Molecular pathogenesis of Parkinson’s disease. Human Mol. Genet, 14, 2749-2755. Gandhi S, Muqit M.M., Stanyer L., Healy D.G., Abou-Sleiman P.M., Hargreaves I., Heales S., Ganguly M., Parsons L., Lees A.J., Latchman D.S., Holton J.L., Wood N.W., Revesz T. (2006) PINK1 protein in normal human brain and Parkinson's disease. Brain, 129, 1720-1731. Gautier C.A., Kitada T., Shen J. (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivityto oxidative stress. Proc Natl Acad Sci U S A, 105, 11364–11369. Grünewald A., Gegg M.E., Taanman J.-W., King R.H., Kock N., Klein C., Schapira A.H.V. (2009) Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Experimental Neurology. Green D.R. (2005) Apoptotic pathways: ten minutes to dead. Cell, 121, 671-674. Gloeckner C.J., Kinkl N., Schumacher A., Braun R.J., O'Neill E., Meitinger T., Kolch W., Prokisch H., Ueffing M. (2006) The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet, 15, 223-32. Gottlieb R.A. (2001) Mitochondria and apoptosis. Biol Signals Recept, 10, 147-161. Hatano Y., Li Y., Sato K., Asakawa S., Yamamura Y., Tomiyama H., Yoshino H., Asahina M., Kobayashi S., Hassin- Baer S., Lu C. S., Ng A. R., Rosales R. L., Shimizu N., Toda T., Mizuno Y. and Hattori N. (2004) Novel PINK1 mutations in early-onset Parkinsonism. Ann. Neurol, 56, 424- 427. Henchcliffe C. and Beal M.F. (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nature, 4, 601-609. Hoepken H.H., Gispert S., Morales B., Wingerter O., Del Turco D., Mulsch A., Nussbaum R.L., Muller K., Drose S., Brandt U., Deller T., Wirth B., Kudin A.P., Kunz W.S., Auburger G. (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis, 25, 401–411. Ibanez P., Lesage S., Lohmann E., Thobois S., De Michele G., Borg M., Agid Y., Durr A. and Brice A. (2006) Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and north Africa. Brain, 129, 686- 694. Junn E., Taniguchi H., Jeong B.S., Zhao X., Ichijo H. and Mouradian M.M. (2005) Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc. Natl. Acad. Sci. USA, 102, 9691-9696. Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y. and Shimizu N. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 302, 605-608. Kitada T., Pisani A., Porter D.R., Yamaguchi H., Tscherter A. (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci U S A. Knott A.B., Perkins G., Schwarzenbacher R., and Wetzel E.B. (2008) Mitochondrial fragmentation in neurodegeneration. Nature, 9, 505-518. Kroemer G. and Reed J.C. (2000) Mitochondrial control of cell death. Nature Med, 6, 513-519. Kuroda Y., Mitsui T., Kunishige M., Matsumoto T. (2006a) Parkin affects mitochondrial function and apoptosis in neuronal and myogenic cells. Biochem Biophys Res Commun, 348, 787-793. Kuroda Y., Mitsui T., Kunishige M., Shono M., Akaike M., Azuma H., Matsumoto T. (2006b) Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet, 15, 883-95. Li Y.P., Magrane´ J., Stavarache M.A., Shaffer S., Chang S., Kaplitt M.G., Huang X.Y., Beal M.F., Manfredi G., Li C. (2009) PINK1 Defect Causes Mitochondrial Dysfunction, Proteasomal Deficit and a-Synuclein Aggregation in Cell Culture Models of Parkinson’s Disease. PLoS One, 4, e4597. Liu W., Vives-Bauza C., Acín-Peréz- R., Yamamoto A., Tan Y., Li Y., Magrané J., Stavarache M.A., Shaffer S., Chang S., Kaplitt M.G., Huang X.Y., Beal M.F., Manfredi G., Li C. (2009) PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson's disease. PLoS One, 4, e4597. Martinou J.C. and Green D.R. (2000) Breaking the mitochondrial barrier. Nature Rev. Mol. Cell Biol, 2, 63- 67. Mitsumoto A. and Nakagawa Y. (2001) DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin. Free Radic. Res, 35, 885-893. Moore D.J., West A.B., Dawson V.L. and Dawson T.M. (2005) Molecular pathology of Parkinson’s disease. Annual Review of Neuroscience, 28, 57-87. Nijhawan D., Honarpour N. and Wang X. (2000) Apoptosis in neural development and disease. Ann. Rev. Neurosci, 23, 73- 87. Park J., Lee S.B., Lee S., Kim Y., Song S. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 441, 1157–1161. Park S.S., Zhao H., Mueller R.A. and Xu Z. (2006) Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3beta. J. Mol. Cell Cardiol, 28, 340-350. Palacino J.J., Sagi D., Goldberg M.S., Krauss S., Motz C., Wacker M., Klose J., Shen J. (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem, 279, 18614-18622. Petit A., Kawaeai T., Paitel E., Sanjo N., Mai. M., Scheid M., Chen F., Gu Y., Hasegawa H., Salei-Rad., Wang L., Rogaeva E., Fraser P., Robinson B., George-Hyslop P. and Tandon A. (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J. Biol. Chem, 280, 34025-34032. Piccoli C., Sardanelli A., Scrima R., Ripoli M., Quarato G., D'Aprile A., Bellomo F., Scacco S., De Michele G., Filla A., Iuso A., Boffoli D., Capitanio N., Papa S. (2008) Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem. Res, 33, 2565–2574. Polymeropoulos M.H., Lavedan C., Leroy E, Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J, Boyer R., Stenroos E.S., Chandrasekharappa s., Athanassiadou A, Papapetropoulos T., Johnson W.G., Lazzarini A.M., Duvoisin R.C., Di Iorio G, Golbe L.I., and Nussbaum R.L. (1997) Mutation in the -synuclein gene identified in families with Parkinson's disease. Science, 276, 2045-2047 Pridgeon J.W., Olzmann J.A., Chin L.S., Li L. (2007) PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1. PLoS Biol, 5, e172. Przedborski S. and Vila M. (2003) The 1-methyl- 4- phenyl- ,2,3,6- tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. Ann N Y Acad Sci, 991, 189-198. Rogaeva E., Johnson J., Lang A.E., Culick C., Gwinn-Hardy K., Kawarai T., Sato C., Morgan A., Werner J., Nussbaum R., Petit A., Okun M.S., McLnerney A., Mandel R., Groen J.L., Fernandez H.H., Postuma R., Foote K.S., Salehi-Rad S., Liang Y., Reimsnider S., Tandon A., Hardy J., St George-Hyslop P. and Singleton A.B. (2005) Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Ann. Neurol, 61, 1898-1904. Rohe C. F., Montagna P., Breedveld G., Cortelli P., Oostra B. A. and Bonifati V. (2004) Homozygous PINK1 mutation causing early-onset Parkinsonism. Ann. Neurol, 56, 427-431. Sandebring A., Thomas K.J., Beilina A., Brug M.V.D., Cleland M.M., Ahmad R., Miller D.W., Zambrano I., Cowburn R.F., Behbahani H., Minguez A.C., Cookson M.R. (2009) Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE, 4, e5701. Schapira A.H., Cooper J.M., Dexter D., Clark J.B., Jenner P., Marsden C.D. (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem, 54, 823-827. Shen J. and Cookson M.R. (2004) Mitochondria and dopamine: New insights into recessive Parkinsonism. Neuron, 43, 301- 304. Shimura H., Hattori N., Kobo S., Mizuno Y., Asakawa S., Minoshima S., Shimizu N., Iwai K., Chiba T., Tanaka K. and Suzuki T. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet, 25, 302-305. Silvestri L., Caputo V., Bellacchio E., Atorino L., Dallapiccola B., Valente E. M. and Casari G. (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Human Mol. Genet, 14, 3477-3492. Sim C.H., Lio D.S., Mok S.S., Masters C.L., Hill A.F., Culvenor J.G. and Cheng H.C. (2006) C-terminal truncation and Parkinson’s disease- associated mutations down- regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum. Mol.Genet, 15, 3251-3262. Smith W.W., Pei Z., Jiang H., Moore D.J., Liang Y., West A.B., Dawson V.L., Dawson T.M. and Ross C.A. (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl. Acad. Sci. USA, 102, 18676-18691. Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R. and Goedert M. (1997) α-Synuclein in Lewy bodies. Nature, 388, 839-840. Tan E.K., Yew K., Chua E., Puvan K., Shen H., Lee E., Puong K.Y., Zhao Y., Pavanni R., Wong M.C., Jamora D., de Silva D., Moe K.T., Woon F.P., Yuen Y. and Tan L. (2006) PINK1 mutations in sporadic early-onset Parkinson’s disease. Mov. Disord, 29, 418-425. Taira T., Saito Y., Niki T., Iguchi-Ariga S.M., Takahashi K., Ariga H. (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO, 2, 213-218. Thomas B. and Beal M.F. (2007) Parkinson's disease. Hum Mol Genet, 16, R183-194. Unoki M. and Nakamura Y. (2001) Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene, 20, 4457-4465. Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M. K., Harvey K., Gispert S., Ali Z., Turco D. D., Bentivoglio A. R., Healy D. G., Albanese A., Nussbaum R., Gonzalez-Maldonado R., Deller T., Salvi S., Cortelli P., Gilks W. P., Latchman D. S., Harvey R. J., Dallapiccola B., Auburger G., and Wood N. W. (2004a) Hereditary early- onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158-1160. Valente E. M., Bentivoglio A. R., Dixon P.H., Ferraris A., Ialongo T., Fraontali M., Albanese A., and Wood N. W. (2001) Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet, 68, 895-900. Valente E. M., Salvi S., Ialongo T., Marongiu R., Elia A.E., Caputo V., Romito L., Albanese A., Dallapiccola B. and Bentivoglio A. R. (2004b) PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol, 56, 337-341. Wang H.L., Chang W. T., Hsu C.Y., Huang P. C., Chow Y.W. and Li A. (2002) Identification of two C-terminal amino acids, Ser355 and Thr357, required for short-term homologous desensitization of -opioid receptors. Biochem. Pharmacol, 64, 257-266. Wang H.L., Hsu C.Y., Huang P.C., Kuo Y.L., Li A., Yeh T.H., Tso A.S. and Chen Y.L. (2005) Heterodimerization of opioid receptor-like 1 and m-opioid receptors impairs the potency of m receptor agonist. J. Neurochem., 92, 1285-1294. Wang H.L., Yeh T.H., Chou A.H., Kuo Y.L., Luo L.J., He C.Y., Huang P.C. and Li A.H. (2006) Polyglutamine-expanded ataxin-7 activates mitochondrial apoptotic pathway of cerebellar neurons by upregulating Bax and downregulating Bcl-xL. Cellular Signalling, 18, 541-552. Wang H,L., Chou A,H., Yeh T.H., Li A.H., Chen Y.L., Kuo Y.L., Tsai S.R., Yu S.T. (2007) PINK1 mutants associated with recessive Parkinson's disease are defective in inhibiting mitochondrial release of cytochrome c. Neurobiol Dis, 28, 216-226. Weintraub D., Comella C.L., and Horn S. (2008) Parkinson’s disease—Part 1: Pathophysiology, Symptoms, Burden, Diagnosis, and Assessment. Am J Manag Care, 14, S40-S48. West A.B., Moore D.J., Biskup S., Bugayenko A., Smith W.W., Ross C.A., Dawson V.L., Dawson T.M. (2005) Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 102, 16842-16847. Wood-Kaczmar A., Gandhi S., and Wood N.W. (2006) Understanding the molecular causes of Parkinson’s disease. TRENDS in Molecular Medicine, 12, 521-528. Wood-Kaczmar A., Gandhi S., Yao Z., Abramov A.S., Miljan E.A., Keen G., Stanyer L., Hargreaves L., Klupsch K., Deas E., Downward J., Mansfield L., Jat P., Taylor J., Heales S., Duchen M.R., Latchman D., Tabrizi S.J., and Wood N.W. (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE, 3, e2455. Yang Y., Ouyang Y., Yang L., Beal M.F., McQuibban A., Vogel H., and Lu B. (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A, 105, 7070–7075. Zimprich A., Biskup S., Leitner P., Lichtner P, Farrer M., Lincoln S., Kachergus J., Hulihan M., Uitti R.J., Calne D.B., Stoessl A.J., Pfeiffer R.F, Patenge N., Carbajal I.C., Vieregge P., Asmus F., Müller-Myhsok B., Dickson D.W., Meitinger T., Strom TM, Wszolek Z.K. and Gasser T. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601- 607. Zhang L., Shimoji M., Thomas B., Moore D.J., Yu SW., Marupudi N.I., Torp R., Torgner I.A., Ottersen O.P., Dawson T.M., Dawson V.L. (2005) Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet, 14, 2063-73. Zoghbi H.Y. and Botas J. (2002) Mouse and fly models of neurodegeneration. Trends in Genet, 18, 463-471.
|