跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖辰芯
研究生(外文):Chen Hsin Liao
論文名稱:在肝癌細胞中甲狀腺素正向調控Dickkopf4並影響癌細胞的轉移能力
論文名稱(外文):Dickkopf 4 positively regulated by thyroid hormone receptor suppresses cell invasion in human hepatoma cells
指導教授:林光輝林光輝引用關係
指導教授(外文):K. H. Lin
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:52
中文關鍵詞:甲狀腺素甲狀腺素受體Dickkopf 4肝癌
外文關鍵詞:T3Dickkopf 4Thyroid hormone receptorliver cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
甲狀腺激素 (T3) 具有調控細胞的生長、分化、發育之功能,其主要透過與細胞核內甲狀腺素受體 (thyroid hormone receptor;TR) 的結合,調控標的基因之轉錄活性。在先前的研究中利用cDNA microarray研究受T3調控的基因,結果發現 Dickkopf 4 (DKK4) 基因受到 T3 正向調控 (up-regulation)。DKK4 屬於分泌型蛋白參與 Wnt 訊息傳遞中並扮演負向調控的角色,DKK4 主要是透過結合至細胞表現 Wnt/Fz 的co-receptor LRP5/6 進而造成 LRP5/6 吞噬作用,因此影響Wnt訊息傳遞,並且抑制Wnt下游基因表現。例如: c-Myc、CD44、Fibronectin、uPAR---等。然而這些基因與細胞增生和轉移有很大的關聯。
在本研究中已證實 HepG2-TR1 和 -TR1 細胞經由 T3 處理下,能夠誘導 DKK4 mRNA 和 protein 的表現。這實驗結果與去除甲狀腺老鼠之動物模式結果ㄧ致,並發現人類肝癌組織癌化周圍的正常組織 (N) 其 DKK4 蛋白的表現量大於癌化組織 (T)。為了更進一步探討 DKK4 在肝癌細胞內所扮演之角色,我們建立高度表現 DKK4肝癌細胞株 (J7和SK-Hep-1)。經由 in vivo 和 in vitro 實驗結果發現高度表現 DKK4 的肝癌細胞株能夠降低癌細胞的移動能力和生長速率,也證實了 DKK4,能抑制肝癌細胞中 Wnt 訊息傳遞並抑制 Wnt下游基因的表現,例如: c-Myc、CD44 和 Fibronectin。
綜合以上結果我們證實了 T3/TRs 正向調控 DKK4 之表現,因而抑制 Wnt/-catenin 訊息路徑並影響肝癌細胞的增生、移行和侵犯能力,因此間接證實了甲狀腺素受體可能具有腫瘤抑制能力。
The thyroid hormone, 3, 3', 5-triiodo-L-thyronine (T3) mediate cellular growth, development and differentiation by binding to nuclear thyroid hormone receptor to regulate target genes transcriptional activities. In previous study, we have carried out cDNA microarray to identify genes regulated by T3, the results indicate that Dickkopf 4 (DKK4) is up-regulated by T3. DKK4, a secreted protein, participates in Wnt signal pathway and plays an inhibition role via binding to Wnt/FZ co-receptor LRP5/6 to suppress Wnt signal. The expression metastasis related proteins such as c-Myc, CD44, fibronectin and uPAR….ect was also down-regulated. All those genes play critical roles in aberrant cellular proliferation and carcinogenesis. In this study, we demonstrate that the induction of DKK4 protein expression according to T3 in TR1 over-expressing cell at the mRNA and protein levels. Similar observation was made on the regulation of DKK4 by using on rats which received surgical thyroidectomies (TX) as an in vivo model. Also, DKK4 is abundantly expressed in noncancerous liver tissues and downregulated in cancerous tissues. Function assays with stable DKK4 transfecting in J7 and SK-Hep-1 revealed that DKK4 expression decreased cell growth, migration and invasion. DKK4 reduced cytoplasmic accumulation of -catenin. Further, downregulation of c-Myc, fibronectin and CD44 was found in the DKK4 expressing clones supporting an inhibitory role of DKK4 in tumor progression. Therefore, we conclude that TRs/DKK4/Wnt-catenin cascade influences the proliferation and migration of hepatoma cells during the metastasis process. Finally, we establish that thyroid hormone receptor may play a tumor suppressor role.
指導教授推薦書----------------------------------------------i
口試委員會審定書--------------------------------------------ii
博士論文著作授權書-----------------------------------------iii
致謝------------------------------------------------------iv
中文摘要----------------------------------------------------v
英文摘要---------------------------------------------------vi
Table of contents----------------------------------------vii
Introduction-----------------------------------------------1
Materials and Methods--------------------------------------6
Results--------------------------------------------------12 Discussion-----------------------------------------------18
Figures and legends---------------------------------------21
References------------------------------------------------40
1.Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev 2001;81(3):1269-304.
2.Hulbert AJ. Thyroid hormones and their effects: a new perspective. Biol Rev Camb Philos Soc 2000;75(4):519-631.
3.Zhang J, Lazar MA. The mechanism of action of thyroid hormones. Annu Rev Physiol 2000;62:439-66.
4.Chatterjee VK, Tata JR. Thyroid hormone receptors and their role in development. Cancer surveys 1992;14:147-67.
5.Schwartz HL, Strait KA, Oppenheimer JH. Molecular mechanisms of thyroid hormone action. A physiologic perspective. Clinics in laboratory medicine 1993;13(3):543-61.
6.Cheng SY. Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 2000;1(1-2):9-18.
7.Lin KH, Wang WJ, Wu YH, Cheng SY. Activation of antimetastatic Nm23-H1 gene expression by estrogen and its alpha-receptor. Endocrinology 2002;143(2):467-75.
8.Koenig RJ. Thyroid hormone receptor coactivators and corepressors. Thyroid 1998;8(8):703-13.
9.Shih CH, Chen SL, Yen CC, et al. Thyroid hormone receptor-dependent transcriptional regulation of fibrinogen and coagulation proteins. Endocrinology 2004;145(6):2804-14.
10.Lin KH, Shieh HY, Chen SL, Hsu HC. Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol Carcinog 1999;26(1):53-61.
11.Chan IH, Privalsky ML. Thyroid hormone receptors mutated in liver cancer function as distorted antimorphs. Oncogene 2006;25(25):3576-88.
12.Lin KH, Zhu XG, Hsu HC, et al. Dominant negative activity of mutant thyroid hormone alpha1 receptors from patients with hepatocellular carcinoma. Endocrinology 1997;138(12):5308-15.
13.Cheng SY. Thyroid hormone receptor mutations in cancer. Mol Cell Endocrinol 2003;213(1):23-30.
14.Parr BA, McMahon AP. Wnt genes and vertebrate development. Curr Opin Genet Dev 1994;4(4):523-8.
15.Bhanot P, Brink M, Samos CH, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996;382(6588):225-30.
16.Ilyas M. Wnt signalling and the mechanistic basis of tumour development. The Journal of pathology 2005;205(2):130-44.
17.de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 1998;95(15):8847-51.
18.Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006;127(3):469-80.
19.Cardigan RA, Mackie IJ, Machin SJ. Hemostatic-endothelial interactions: a potential anticoagulant role of the endothelium in the pulmonary circulation during cardiac surgery. J Cardiothorac Vasc Anesth 1997;11(3):329-36.
20.Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998;391(6665):357-62.
21.Hsieh JC, Kodjabachian L, Rebbert ML, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 1999;398(6726):431-6.
22.Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 1997;88(6):747-56.
23.Krupnik VE, Sharp JD, Jiang C, et al. Functional and structural diversity of the human Dickkopf gene family. Gene 1999;238(2):301-13.
24.Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 2006;25(57):7469-81.
25.Wirths O, Waha A, Weggen S, et al. Overexpression of human Dickkopf-1, an antagonist of wingless/WNT signaling, in human hepatoblastomas and Wilms' tumors. Lab Invest 2003;83(3):429-34.
26.Mikheev AM, Mikheeva SA, Liu B, Cohen P, Zarbl H. A functional genomics approach for the identification of putative tumor suppressor genes: Dickkopf-1 as suppressor of HeLa cell transformation. Carcinogenesis 2004;25(1):47-59.
27.Hsieh SY, Hsieh PS, Chiu CT, Chen WY. Dickkopf-3/REIC functions as a suppressor gene of tumor growth. Oncogene 2004;23(57):9183-9.
28.Mao B, Niehrs C. Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 2003;302(1-2):179-83.
29.Sato H, Suzuki H, Toyota M, et al. Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 2007;28(12):2459-66.
30.Maehata T, Taniguchi H, Yamamoto H, et al. Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer. World J Gastroenterol 2008;14(17):2702-14.
31.Lin KH, Shieh HY, Hsu HC. Negative regulation of the antimetastatic gene Nm23-H1 by thyroid hormone receptors. Endocrinology 2000;141(7):2540-7.
32.Hu WY, Fukuda N, Kotani M, Kanmatsuse K. Adenovirus-mediated transfer of ribozyme targeting platelet-derived growth factor A-chain mRNA inhibits growth of vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 2002;39(6):858-65.
33.Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 1981;29(4):577-80.
34.Chen RN, Huang YH, Lin YC, et al. Thyroid hormone promotes cell invasion through activation of furin expression in human hepatoma cell lines. Endocrinology 2008;149(8):3817-31.
35.Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. Journal of cell science 2003;116(Pt 13):2627-34.
36.He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science (New York, NY 1998;281(5382):1509-12.
37.Wielenga VJ, Smits R, Korinek V, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. The American journal of pathology 1999;154(2):515-23.
38.Gradl D, Kuhl M, Wedlich D. The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Molecular and cellular biology 1999;19(8):5576-87.
39.Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. The American journal of pathology 1999;155(4):1033-8.
40.Chen RN, Huang YH, Yeh CT, Liao CH, Lin KH. Thyroid hormone receptors suppress pituitary tumor transforming gene 1 activity in hepatoma. Cancer research 2008;68(6):1697-706.
41.Lin KH, Chen CY, Chen SL, et al. Regulation of fibronectin by thyroid hormone receptors. Journal of molecular endocrinology 2004;33(2):445-58.
42.Huang YH, Lee CY, Tai PJ, et al. Indirect regulation of human dehydroepiandrosterone sulfotransferase family 1A member 2 by thyroid hormones. Endocrinology 2006;147(5):2481-9.
43.Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology (Baltimore, Md 2001;33(5):1098-109.
44.Monga SP, Monga HK, Tan X, Mule K, Pediaditakis P, Michalopoulos GK. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 2003;124(1):202-16.
45.Calvisi DF, Ladu S, Factor VM, Thorgeirsson SS. Activation of beta-catenin provides proliferative and invasive advantages in c-myc/TGF-alpha hepatocarcinogenesis promoted by phenobarbital. Carcinogenesis 2004;25(6):901-8.
46.Heider KH, Hofmann M, Hors E, et al. A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. The Journal of cell biology 1993;120(1):227-33.
47.Matsumura Y, Tarin D. Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet 1992;340(8827):1053-8.
48.Wielenga VJ, Heider KH, Offerhaus GJ, et al. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer research 1993;53(20):4754-6.
49.Afify A, Purnell P, Nguyen L. Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Experimental and molecular pathology 2009;86(2):95-100.
50.Carpenter PM, Dao AV. The role of hyaluronan in mesothelium-induced motility of ovarian carcinoma cells. Anticancer research 2003;23(5A):3985-90.
51.Gong W, Liu Y, Huang B, et al. Recombinant CBD-HepII polypeptide of fibronectin inhibits alphavbeta3 signaling and hematogenous metastasis of tumor. Biochemical and biophysical research communications 2008;367(1):144-9.
52.Jha RK, Ma Q, Chen S, Sha H, Ding S. Relationship of fibronectin and CD44v6 expression with invasive growth and metastasis of liver cancer. Cancer investigation 2009;27(3):324-8.
53.Baehs S, Herbst A, Thieme SE, et al. Dickkopf-4 is frequently down-regulated and inhibits growth of colorectal cancer cells. Cancer letters 2009;276(2):152-9.
54.Akino K, Akita S, Mizuguchi T, et al. A novel molecular marker of pituitary tumor transforming gene involves in a rat liver regeneration. The Journal of surgical research 2005;129(1):142-6.
55.Cho-Rok J, Yoo J, Jang YJ, et al. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology (Baltimore, Md 2006;43(5):1042-52.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊