(3.236.231.61) 您好!臺灣時間:2021/05/15 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張有志
研究生(外文):Yu Chih Chang
論文名稱:藉代謝體學探討糖尿病加速動脈粥狀硬化之生物指標
論文名稱(外文):Metabolomic approaches to search for biomarkers in diabetes-accelerated atherosclerosis
指導教授:蕭明熙蕭明熙引用關係
指導教授(外文):M. S. Shiao
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:151
中文關鍵詞:代謝體學糖尿病動脈粥狀硬化生物指標
外文關鍵詞:metabolomicsdiabetes mellitusatherosclerosisbiomarker
相關次數:
  • 被引用被引用:1
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多的研究指出糖尿病會加速動脈粥狀硬化,後者為引起心血管疾病的主因。目前動脈粥狀硬化的假說為低密度脂蛋白氧化、內皮細胞功能變異以及發炎反應。本研究為了瞭解多重危險因子對糖尿病加速動脈粥狀硬化進展的貢獻度和交互作用關係,故使用 apoE-/- 小鼠 (自發性動脈粥狀硬化動物模式) 處理 streptozotocin (STZ) 為模式來探討問題。本研究利用代謝體學 (metabolomics) 方法去探討上述疾病進展過程中多種危險因子的貢獻度和交互作用。氫核磁共振 (1H-NMR) 光譜法用於血漿和肝臟中脂質代謝物廣泛的分析,液相層析-質譜法 (LC-MS) 則用於水溶物質廣泛的分析,再藉主成分分析 (principal component analysis, PCA) 和資料庫的搜尋,尋找有顯著改變的代謝物,並評估作為生物指標的潛力。結果顯示: STZ 誘導的 (第一型) 糖尿病組 (n=6) 和控制組 (n=10) 比較,前者血漿膽固醇、游離脂肪酸 (FFAs)、多元不飽和脂肪酸 (PUFAs) 和膽鹼磷脂 (phosphatidylcholine, PC) 值皆較控制組顯著增加 (P<0.05)。肝臟中脂質代謝物的1H-NMR圖譜顯示,控制組脂質代謝異常的情形為高三酸甘油酯 (triacylglycerol, TG) 型式的脂肪肝,糖尿病組則呈現為高膽固醇型式的脂肪肝。顯示 STZ 誘導 apoE-/- 小鼠糖尿病的發生,所造成的脂質異常屬於更嚴重且更趨動脈粥狀硬化的型式,肝臟為主要代謝異常的位置,肝臟和血漿的膽固醇和血漿 PC 之間呈高正相關,故推測糖尿病組肝臟膽固醇生合成增加亦促使 PC 生合成增加,釋放至血漿中造成糖尿病組更高膽固醇和高 PC 的情況。肝臟中的水溶代謝物譜型分析結果顯示,lactate、alanine 和 acetate 在糖尿病組中皆顯著增加 (P<0.05)。液相層析-質譜法分析的結果透過 relative frequency filter (100%)、ANOVA 和 PCA 分析,可在肝臟和血漿中確認出糖尿病組和控制組間具有顯著差異的 100 多個質量點。本研究可得以下結論:糖尿病加速動脈粥狀硬化的進展,可能是藉由造成更嚴重且更趨動脈粥狀硬化的脂質代謝異常所致。血漿 PC 值增加可能作為一項有潛力的生物指標,用以偵測糖尿病加速動脈粥狀硬化的進展。
Many studies have strongly suggested that diabetes mellitus (DM) may accelerate atherosclerosis, the underlying mechanism of cardiovascular disease (CVD). Strong evidence also supports that LDL oxidation, endothelial dysfunction, and inflammations are involved in the pathogenesis of atherosclerosis. To better understand the contribution and interaction of the multiple risk factors in diabetes-accelerated atherosclerosis, apolipoprotein E-deficient (apoE-/-) mice (a spontaneous atherosclerosis animal model) treated with streptozotocin (STZ) were used as an animal model. This study also incorporated metabolomics as an approach to explore the trend and contribution of lipid disorders in diabetes-accelerated atherosclerosis. Proton-nuclear magnetic resonance (1H-NMR) spectroscopy was used as the tool for global lipid metabolite profiling in plasma and liver, whereas liquid chromatography-mass spectrometry (LC-MS) was used as a tool for global water-soluble metabolite profiling. Principal component analysis (PCA) and database (METLIN and Human Metabolome Database) search were used for finding candidate metabolites, which were significantly changed. Results demonstrated that lipid disorders causing by STZ-induced diabetes (type 1 DM) were more atherogenic (hypercholesterolemia). In DM group, plasma cholesterol, free fatty acids (FFAs), polyunsaturated fatty acids (PUFAs) and phosphatidylcholine (PC) were significantly elevated (P<0.05). Hepatic lipid metabolite profiling demonstrated that the lipid disorders shifted from high triacylglycerol (TG) in control group to high cholesterol in DM group. Liver was the major site where metabolic disturbance occurred. The highly positive correlations between cholesterol and PC in liver and plasma suggested that increased biosynthesis of cholesterol also stimulated the biosynthesis of PC in the liver. Water-soluble metabolite analysis by 1H-NMR demonstrated that lactate, alanine and acetate were significantly elevated (P<0.05) in the liver in DM group. This study concludes that the underlying mechanism in diabetes-accelerated atherosclerosis may be due to more severe and atherogenic lipid disorders in liver and plasma, namely from elevated TG to more atherogenic hypercholesterolemia. Elevation of plasma PC may be a potential biomarker to predict the progression of diabetes-accelerated atherosclerosis.
目錄
指導教授推薦書
口試委員會審定書
授權書 iii
誌謝 iv
中文摘要 vi
Abstract viii
目錄 x
表目錄 xiv
圖目錄 xvi
縮寫表 xviii
第一章、緒論 (Introduction) 1
1.1 糖尿病 (Diabetes mellitus) 1
1.2 肥胖、胰島素抗拒性與代謝症候群 3
1.3 動脈粥狀硬化 (Atherosclerosis) 4
1.4 內皮細胞功能變異 (Endothelial cell dysfunction) 6
1.5 血脂異常 7
1.6 發炎反應 (Inflammation) 9
1.7 動物模式 11
1.8 生物指標 (Biomarkers) 12
1.9 代謝體學 (Metabolomics) 13
2.0 核磁共振光譜法 (Nuclear magnetic resonance spectroscopy) 16
第二章、研究目的 18
第三章、實驗材料和方法 19
3.1 實驗材料 19
3.1.1 實驗動物 19
3.1.2 飼料 19
3.1.3 試劑套組 20
3.1.4 分析試藥、溶劑 20
3.1.5 實驗設備 21
3.2 實驗方法 22
3.2.1 動物處理 22
3.2.2 血漿生化數值之測定 22
3.2.2.1 測量血漿中膽固醇 22
3.2.2.2 測量血漿中三酸甘油酯 23
3.2.2.3 測量血糖 23
3.2.2.4 測量血漿游離脂肪酸 24
3.2.2.5 測量血漿 CRP 24
3.2.3 同時粹取水溶、脂溶代謝物 25
3.2.4 氫核磁共振光譜 (1H-NMR) 測定 26
3.2.5 液相層析質譜法實驗 27
3.3 統計分析 29
第四章、結果 31
4.1 血漿生化數值分析 31
4.2 核磁共振光譜分析 31
4.2.1 血漿代謝物核磁共振光譜分析 31
4.2.2 肝臟代謝物核磁共振光譜分析 35
4.3 生物指標間的相關性 37
4.3.1 血漿中生物指標間的相關性 (Correlation coefficient, r) 37
4.3.2 血漿和肝臟中生物指標間的相關性 37
4.3.3 肝臟中生物指標間的相關性 39
4.3.4 血漿生物指標間normalize TC後之相關性 39
4.3.5 血漿和肝臟生物指標間normalize TC後之相關性 40
4.3.6 肝臟生物指標間normalize TC後之相關性 41
4.4 液相層析質譜儀分析 41
第五章、討論 43
第六章、結論 49
參考文獻 50
表圖 59
附錄 111

表目錄
Table 1. Plasma concentrations of glucose, FFAs, TG, TC and CRP. 59
Table 2. 1H NMR assignments with chemical shift, multiplicity for signals identified in the lipid extract of blood plasma. 60
Table 3. Comparison of integration values of plasma lipid metabolites in control (CT) and STZ-treated (DM) mice. 61
Table 4. Lipid metabolites found in the plasma of control (CT) and STZ- treated (DM) mice 62
Table 5. Concentrations of lipid metabolites in the plasma of CT (control) and STZ-treated (DM) mice 63
Table 6. Comparison of integration values of liver lipid metabolites in CT (control) and STZ-treated (DM) mice. 64
Table 7. Lipid metabolites found in the liver of control (CT) and STZ-treated (DM) mice. 65
Table 8. Concentrations of lipid metabolites in the liver of CT (control) and STZ-treated (DM) mice. 66
Table 9. 1H NMR assignments with chemical shift, multiplicity for signals identified in the water-soluble metabolites of blood plasma. 67
Table 10. Water soluble-metabolites found in the plasma of control (CT) and STZ-treated (DM) mice. 68
Table 11. Water-soluble metabolites found in the liver of control (CT) and STZ-treated (DM) mice. 69
Table 12. Correlation between biomarkers of plasma and liver in total mice (control and diabetes groups). 70
Table 13. Correlation between biomarkers of plasma and liver normalized with cholesterol of plasma and liver in total mice (control and diabetes groups). 71

圖目錄
Fig. 1. The progression of atherosclerosis. 72
Fig. 2. The metabolism of lipoproteins. 73
Fig. 3. Diagram of lesion formation time period in apoE-deficient mice fed with western type diet or chow diet. 74
Fig. 4. Time table of animal experiment. 75
Fig. 5. Experimental flow chart. 76
Fig. 6. 1H NMR spectra of lipid extracts from plasma of A. control (CT) and B. diabetes (DM) group. 77
Fig. 7. 1H NMR spectra of lipid extracts from liver of A. control (CT) and B. diabetes (DM) group. 78
Fig. 8. 1H NMR spectra of plasma water-soluble metabolites from diabetes group (A) without water suppression (B) with water suppression. 79
Fig. 9. 1H NMR spectra of plasma water-soluble metabolites in A. control (CT) and B. STZ-treated (DM) mice. 80
Fig. 10. 1H NMR spectra of liver water soluble-metabolites in A. control (CT) and B. STZ-treated (DM) mice. 81
Fig. 11. Correlation between biomarkers of plasma 82
Fig. 12. Correlation between biomarkers of liver and plasma 87
Fig. 13. Correlation between biomarkers of liver 94
Fig. 14. Correlation between TG and PUFA of plasma normalized with cholesterol of plasma 96
Fig. 15. Correlation between biomarkers of plasma and liver normalized with cholesterol respectively 97
Fig. 16. Correlation between biomarkers of liver normalized with cholesterol of liver 98
Fig. 17. BPC chromatograms of water-soluble metabolites extracted from plasma of A. control (CT) and B. diabetes (DM) group. 99
Fig. 18. BPC chromatograms of water-soluble metabolites extracted from liver of A. control (CT) and B. diabetes (DM) group. 100
Fig. 19. PCA plot (PC1 18.83% vs. PC2 7.687%) of plasma water-soluble metabolites from control (CT) and diabetes (DM) group 101
Fig. 20. PCA plot (PC1 43.32% vs. PC2 15.72%) of plasma water-soluble metabolites from control (CT) and diabetes (DM) group. 102
Fig. 21. Ordered list of plasma water-soluble metabolites 103
Fig. 22. PCA plot (PC1 5.483% vs. PC2 4.671%) of liver water-soluble metabolites from control (CT) and diabetes (DM) group. 104
Fig. 23. PCA plot (PC1 34.83% vs. PC2 13.74%) of liver water-soluble metabolites from control (CT) and diabetes (DM) group. 105
Fig. 24. Ordered list of liver water-soluble metabolites 106
Fig. 25. Metabolites significantly disturbed in the liver and plasma. 107
Fig. 27. Correlation between plasma biomarkers and lipid core 109
1. Wild, S., Roglic, G., Green, A., Sicree, R., and King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047-1053.
2. 行政院衛生署 http://www.doh.gov.tw/cht2006/index_populace.aspx.
3. Association, A.D. (2006). Standards of medical care in diabetes--2006. Diabetes Care 29 Suppl 1, S4-42.
4. Stumvoll, M., Goldstein, B.J., and van Haeften, T.W. (2005). Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333-1346.
5. Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.
6. Retnakaran, R., and Zinman, B. (2008). Type 1 diabetes, hyperglycaemia, and the heart. Lancet 371, 1790-1799.
7. Poitout, V., and Robertson, R.P. (2002). Minireview: Secondary beta-cell failure in type 2 diabetes--a convergence of glucotoxicity and lipotoxicity. Endocrinology 143, 339-342.
8. Kahn, S.E., Hull, R.L., and Utzschneider, K.M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840-846.
9. Eckel, R.H., Grundy, S.M., and Zimmet, P.Z. (2005). The metabolic syndrome. Lancet 365, 1415-1428.
10. Grundy, S.M. (2008). Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28, 629-636.
11. Ginsberg, H.N., Zhang, Y.L., and Hernandez-Ono, A. (2006). Metabolic syndrome: focus on dyslipidemia. Obesity (Silver Spring) 14 Suppl 1, 41S-49S.
12. Arner, P. (1998). Not all fat is alike. Lancet 351, 1301-1302.
13. Bergman, R.N., Kim, S.P., Hsu, I.R., Catalano, K.J., Chiu, J.D., Kabir, M., Richey, J.M., and Ader, M. (2007). Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med 120, S3-8; discussion S29-32.
14. Steinberg, D. (2002). Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8, 1211-1217.
15. Glass, C.K., and Witztum, J.L. (2001). Atherosclerosis: the road ahead. Cell 104, 503-516.
16. Rader, D.J., and Daugherty, A. (2008). Translating molecular discoveries into new therapies for atherosclerosis. Nature 451, 904-913.
17. Beckman, J.A., Creager, M.A., and Libby, P. (2002). Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287, 2570-2581.
18. Milstien, S., and Katusic, Z. (1999). Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 263, 681-684.
19. Libby, P., Nathan, D.M., Abraham, K., Brunzell, J.D., Fradkin, J.E., Haffner, S.M., Hsueh, W., Rewers, M., Roberts, B.T., Savage, P.J., et al. (2005). Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Circulation 111, 3489-3493.
20. Hou, C.J., Tsai, C.H., Su, C.H., Wu, Y.J., Chen, S.J., Chiu, J.J., Shiao, M.S., and Yeh, H.I. (2008). Diabetes reduces aortic endothelial gap junctions in ApoE-deficient mice: simvastatin exacerbates the reduction. J Histochem Cytochem 56, 745-752.
21. Van Gaal, L.F., Mertens, I.L., and De Block, C.E. (2006). Mechanisms linking obesity with cardiovascular disease. Nature 444, 875-880.
22. Mazzone, T., Chait, A., and Plutzky, J. (2008). Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet 371, 1800-1809.
23. Rocha, V.Z., and Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6, 399-409.
24. Shoelson, S.E., Lee, J., and Goldfine, A.B. (2006). Inflammation and insulin resistance. J Clin Invest 116, 1793-1801.
25. Libby, P. (2002). Inflammation in atherosclerosis. Nature 420, 868-874.
26. Hansson, G.K. (2005). Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352, 1685-1695.
27. Wu, K.K., and Huan, Y. (2007). Diabetic atherosclerosis mouse models. Atherosclerosis 191, 241-249.
28. Reddick, R.L., Zhang, S.H., and Maeda, N. (1994). Atherosclerosis in mice lacking apoE. Evaluation of lesional development and progression. Arterioscler Thromb Vasc Biol 14, 141-147.
29. Palinski, W., Ord, V.A., Plump, A.S., Breslow, J.L., Steinberg, D., and Witztum, J.L. (1994). ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb Vasc Biol 14, 605-616.
30. Nakashima, Y., Plump, A.S., Raines, E.W., Breslow, J.L., and Ross, R. (1994). ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb Vasc Biol 14, 133-140.
31. Hayek, T., Hussein, K., Aviram, M., Coleman, R., Keidar, S., Pavoltzky, E., and Kaplan, M. (2005). Macrophage foam-cell formation in streptozotocin-induced diabetic mice: stimulatory effect of glucose. Atherosclerosis 183, 25-33.
32. Kunjathoor, V.V., Wilson, D.L., and LeBoeuf, R.C. (1996). Increased atherosclerosis in streptozotocin-induced diabetic mice. J Clin Invest 97, 1767-1773.
33. Park, L., Raman, K.G., Lee, K.J., Lu, Y., Ferran, L.J., Jr., Chow, W.S., Stern, D., and Schmidt, A.M. (1998). Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4, 1025-1031.
34. Koenig, W., and Khuseyinova, N. (2007). Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol 27, 15-26.
35. Armstrong, E.J., Morrow, D.A., and Sabatine, M.S. (2006). Inflammatory biomarkers in acute coronary syndromes: part I: introduction and cytokines. Circulation 113, e72-75.
36. Armstrong, E.J., Morrow, D.A., and Sabatine, M.S. (2006). Inflammatory biomarkers in acute coronary syndromes: part II: acute-phase reactants and biomarkers of endothelial cell activation. Circulation 113, e152-155.
37. Armstrong, E.J., Morrow, D.A., and Sabatine, M.S. (2006). Inflammatory biomarkers in acute coronary syndromes: part IV: matrix metalloproteinases and biomarkers of platelet activation. Circulation 113, e382-385.
38. Nicholson, J.K., and Lindon, J.C. (2008). Systems biology: Metabonomics. Nature 455, 1054-1056.
39. Watson, A.D. (2006). Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47, 2101-2111.
40. Oostendorp, M., Engelke, U.F., Willemsen, M.A., and Wevers, R.A. (2006). Diagnosing inborn errors of lipid metabolism with proton nuclear magnetic resonance spectroscopy. Clin Chem 52, 1395-1405.
41. Mayr, M., Chung, Y.L., Mayr, U., Yin, X., Ly, L., Troy, H., Fredericks, S., Hu, Y., Griffiths, J.R., and Xu, Q. (2005). Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler Thromb Vasc Biol 25, 2135-2142.
42. R. M. Silverstein, G.C.B., Terence C. Morrill (1991). Spectrometric identification of organic compounds, Fifth Edition, (Singapore: John Wiley & Sons).
43. 蕭明熙、林麗娟 (1988). <利用 NMR 探討次級代謝物的生合成>,《核磁共振儀專輯(二)》, (國家實驗研究院儀器科技研究中心).
44. Lenz, E.M., and Wilson, I.D. (2007). Analytical strategies in metabonomics. J Proteome Res 6, 443-458.
45. Goldberg, I.J., and Dansky, H.M. (2006). Diabetic vascular disease: an experimental objective. Arterioscler Thromb Vasc Biol 26, 1693-1701.
46. Hsueh, W., Abel, E.D., Breslow, J.L., Maeda, N., Davis, R.C., Fisher, E.A., Dansky, H., McClain, D.A., McIndoe, R., Wassef, M.K., et al. (2007). Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 100, 1415-1427.
47. Deeg, R., and Ziegenhorn, J. (1983). Kinetic enzymic method for automated determination of total cholesterol in serum. Clin Chem 29, 1798-1802.
48. McGowan, M.W., Artiss, J.D., Strandbergh, D.R., and Zak, B. (1983). A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem 29, 538-542.
49. Barham, D., and Trinder, P. (1972). An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 97, 142-145.
50. Demacker, P.N., Hijmans, A.G., and Jansen, A.P. (1982). Enzymic and chemical-extraction determinations of free fatty acids in serum compared. Clin Chem 28, 1765-1768.
51. Eckersall, P.D. (2000). Recent advances and future prospects for the use of acute phase proteins as markers of disease in animals. Revue Méd. Vét. 151, 577-584.
52. Folch, J., Lees, M., and Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509.
53. Beckonert, O., Keun, H.C., Ebbels, T.M., Bundy, J., Holmes, E., Lindon, J.C., and Nicholson, J.K. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2, 2692-2703.
54. Cover, K.S., Stam, C.J., and van Dijk, B.W. (2004). Detection of very high correlation in the alpha band between temporal regions of the human brain using MEG. Neuroimage 22, 1432-1437.
55. Kriat, M., Vion-Dury, J., Confort-Gouny, S., Favre, R., Viout, P., Sciaky, M., Sari, H., and Cozzone, P.J. (1993). Analysis of plasma lipids by NMR spectroscopy: application to modifications induced by malignant tumors. J Lipid Res 34, 1009-1019.
56. Nicholson, J.K., Foxall, P.J., Spraul, M., Farrant, R.D., and Lindon, J.C. (1995). 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem 67, 793-811.
57. Shamir, R., Shehadeh, N., Rosenblat, M., Eshach-Adiv, O., Coleman, R., Kaplan, M., Hamoud, S., Lischinsky, S., and Hayek, T. (2003). Oral insulin supplementation attenuates atherosclerosis progression in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23, 104-110.
58. Tikellis, C., Jandeleit-Dahm, K.A., Sheehy, K., Murphy, A., Chin-Dusting, J., Kling, D., Sebokova, E., Cooper, M.E., Mizrahi, J., and Woollard, K.J. (2008). Reduced plaque formation induced by rosiglitazone in an STZ-diabetes mouse model of atherosclerosis is associated with downregulation of adhesion molecules. Atherosclerosis 199, 55-64.
59. Pan, H.J., Lin, Y., Chen, Y.E., Vance, D.E., and Leiter, E.H. (2006). Adverse hepatic and cardiac responses to rosiglitazone in a new mouse model of type 2 diabetes: relation to dysregulated phosphatidylcholine metabolism. Vascul Pharmacol 45, 65-71.
60. Matsumoto, T., Kobayashi, T., and Kamata, K. (2007). Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 14, 3209-3220.
61. Pepys, M.B., and Hirschfield, G.M. (2003). C-reactive protein: a critical update. J Clin Invest 111, 1805-1812.
62. Reifenberg, K., Lehr, H.A., Baskal, D., Wiese, E., Schaefer, S.C., Black, S., Samols, D., Torzewski, M., Lackner, K.J., Husmann, M., et al. (2005). Role of C-reactive protein in atherogenesis: can the apolipoprotein E knockout mouse provide the answer? Arterioscler Thromb Vasc Biol 25, 1641-1646.
63. Paul, A., Ko, K.W., Li, L., Yechoor, V., McCrory, M.A., Szalai, A.J., and Chan, L. (2004). C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation 109, 647-655.
64. Wang, Y., and Oram, J.F. (2007). Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a protein kinase C delta pathway. J Lipid Res 48, 1062-1068.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊