|
參考文獻 1. Thompson, C.B., Apoptosis in the pathogenesis and treatment of disease. Science, 1995. 267(5203): p. 1456-62. 2. Jacobson, M.D., M. Weil, and M.C. Raff, Programmed cell death in animal development. Cell, 1997. 88(3): p. 347-54. 3. Kumar, S., Caspase function in programmed cell death. Cell Death Differ, 2007. 14(1): p. 32-43. 4. Fuentes-Prior, P. and G.S. Salvesen, The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J, 2004. 384(Pt 2): p. 201-32. 5. Degterev, A., M. Boyce, and J. Yuan, A decade of caspases. Oncogene, 2003. 22(53): p. 8543-67. 6. Porter, A.G. and R.U. Janicke, Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 1999. 6(2): p. 99-104. 7. Timmer, J.C. and G.S. Salvesen, Caspase substrates. Cell Death Differ, 2007. 14(1): p. 66-72. 8. Furusawa, T., et al., Isolation of a novel PDZ-containing myosin from hematopoietic supportive bone marrow stromal cell lines. Biochem Biophys Res Commun, 2000. 270(1): p. 67-75. 9. Sheng, M. and C. Sala, PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci, 2001. 24: p. 1-29. 10. Mori, K., et al., Genome structure and differential expression of two isoforms of a novel PDZ-containing myosin (MysPDZ) (Myo18A). J Biochem, 2003. 133(4): p. 405-13. 11. Isogawa, Y., et al., The N-terminal domain of MYO18A has an ATP-insensitive actin-binding site. Biochemistry, 2005. 44(16): p. 6190-6. 12. Tan, I., et al., A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow. Cell, 2008. 135(1): p. 123-36. 13. Yang, C.H., et al., Identification of the surfactant protein A receptor 210 as the unconventional myosin 18A. J Biol Chem, 2005. 280(41): p. 34447-57. 14. Wright, J.R., Immunoregulatory functions of surfactant proteins. Nat Rev Immunol, 2005. 5(1): p. 58-68. 15. Mermall, V., P.L. Post, and M.S. Mooseker, Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science, 1998. 279(5350): p. 527-33. 16. Rudel, T. and G.M. Bokoch, Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science, 1997. 276(5318): p. 1571-4. 17. Chan, W.H., J.S. Yu, and S.D. Yang, Apoptotic signalling cascade in photosensitized human epidermal carcinoma A431 cells: involvement of singlet oxygen, c-Jun N-terminal kinase, caspase-3 and p21-activated kinase 2. Biochem J, 2000. 351(Pt 1): p. 221-32. 18. Frost, J.A., et al., Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol Cell Biol, 1996. 16(7): p. 3707-13. 19. Semple, J.I., et al., Cleavage and degradation of Claspin during apoptosis by caspases and the proteasome. Cell Death Differ, 2007. 14(8): p. 1433-42. 20. Na, K.S., et al., Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis. Mol Cells, 2007. 24(2): p. 261-7. 21. Mori, K., et al., Subcellular localization and dynamics of MysPDZ (Myo18A) in live mammalian cells. Biochem Biophys Res Commun, 2005. 326(2): p. 491-8. 22. Boulares, A.H., et al., Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem, 1999. 274(33): p. 22932-40. 23. Jakobi, R., et al., Caspase-activated PAK-2 is regulated by subcellular targeting and proteasomal degradation. J Biol Chem, 2003. 278(40): p. 38675-85. 24. Dephoure, N., et al., A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A, 2008. 105(31): p. 10762-7. 25. Olsen, J.V., et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006. 127(3): p. 635-48. 26. Zahedi, R.P., et al., Phosphoproteome of resting human platelets. J Proteome Res, 2008. 7(2): p. 526-34.
|