跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/14 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:夏鈺清
研究生(外文):Yu Ching Hsia
論文名稱:蛋白激酶G調節大鼠主動脈鬆弛反應之性別差異:性激素調節蛋白激酶G的訊息核醣核酸表現
論文名稱(外文):Gender differences in protein kinase G-mediated vasorelaxation of rat aorta: Sex hormones modulate mRNA expression of protein kinase G.
指導教授:馬蘊華樓迎統樓迎統引用關係
指導教授(外文):Y. H. MaY. T. Lau
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:91
中文關鍵詞:蛋白激酶G血管鬆弛性別差異性激素
外文關鍵詞:protein kinase Gvasorelaxationgender differencesex hormone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
  男性和停經後女性在高血壓和冠狀動脈疾病的發生率比停經前女性高。一氧化氮 (NO)是一種血管內皮釋放的血管擴張劑,而雌激素能藉由增加NO的合成達到心血管保護效果。我們知道雌激素能藉由調節NO以增加環鳥糞嘌呤核苷單磷酸鹽(cGMP)達到血管平滑肌鬆弛的效果,但性別與補充雌激素對於NO-cGMP訊息下游的主要分子蛋白激酶G (PKG)的影響相關資料卻極少。我們研究的目標是探討性別對於PKG調節血管舒張的效果,我們在Sprague-Dawley大白鼠胸主動脈加入8-bromoguanosine-3',5'-cyclic monophosphate、zaprinast或BAY 41-2272影響PKG活性,並觀察血管放鬆的性別差異表現,結果顯示三種藥物對公鼠胸主動脈引起的血管鬆弛反應比體重對照母鼠較大。我們進一步觀察性激素對於PKG的調節,對於去除卵巢母鼠或去除睪丸公鼠進行性激素或空白試劑的補充,並利用定量聚合酶鏈鎖反應測量PKG的mRNA相對表現量。結果顯示對於去除卵巢母鼠補充雌二醇會造成主動脈PKG表現量下降,而黃體素能拮抗雌二醇所造成的反應;睪固酮同樣也會造成主動脈PKG表現量減少。我們的實驗結果顯示:(1) PKG所調節的血管舒張反應雄性高於雌性;(2) 性激素能調節主動脈的PKG表現。
The incidence of hypertension and coronary artery disease in men and postmenopausal women are higher compared with premenopausal women. Nitric oxide (NO) is a major vasodilator released by vascular endothelium and estrogen augments NO and cyclic guanosine monophosphate (cGMP) synthesis which may contribute to the observed cardioprotective effects. However, the effects of gender and estrogen administration on the primary downstream effector molecule of the NO-cGMP signaling pathway, protein kinase G (PKG) is not clear. The aim of our study was to characterize effects of gender and hormones on vasodilation mediated by PKG. The study of sexual dimorphism in PKG activity was based on relaxation of thoracic aortic segments of Sprague-Dawley rats by 8-bromoguanosine-3',5'-cyclic monophosphate (8-Br-cGMP), zaprinast and BAY 41-2272. All these reagents were more potent in aortas from male rats than those from weight-matched female ones. To further investigate the effects of sex hormones on PKG, ovariectomized (OVX) or orchiectomized (ORX) rats were supplied with sex hormones or vehicle. Relative mRNA expression of PKG was assessed by quantitative real-time PCR. Administration of 17β-estradiol to OVX rats decreased aortic PKG expression, and progesterone attenuated this response. Testosterone treatment of ORX rats also decreased aortic PKG expression. We thus conclude that 1) gender difference exists in PKG-mediated vasodilation, with males appear to be better and 2) sex hormones might modulate PKG expression in aorta.
目錄

指導教授推薦書
口試委員會審定書
國家圖書館授權書
長庚大學授權書
誌謝................................................................................................................................v
中文摘要......................................................................................................................vii
英文摘要……………………………………………………………………….……viii
縮寫表…………………………………………………………………………...……ix
目錄……………………………………………………………………………...……xi
圖表目錄…………………………………………………………………………….xiv
第一章 序論………………………………………………………………………...1
1.1 雄性素與雄性素對心血管之影響……………………………………………1
1.2 雌激素與雌性素對心血管之影響………………………………....................2
1.3 黃體內分泌與黃體內分泌對心血管之影響…………………………………4
1.4 一氧化氮-環鳥糞嘌呤核苷單磷酸鹽途徑…………………………………6
1.5 一氧化氮-環鳥糞嘌呤核苷單磷酸鹽途徑擴張血管的性別差異及雌激素之影響………………………………………………………………………...7
1.6 蛋白激酶G…………………………………………………………................8
第二章 研究目的與假說…………………………………………………………..10
2.1 研究目的…………………………………………………………...................10
2.2 假說……………………………………………………………………….…..10
第三章 實驗方法與材料…………………………………………………………..11
3.1 實驗材料…………………………………………………………...................11
3.1.1 實驗動物來源………………………………………………………..…..11
3.1.2 實驗藥品……………………………………………………………..…..11
3.1.3 實驗儀器……………………………………………………………..…..12
3.1.4 實驗試劑套組…………………………………………………………....13
3.2 實驗方法……………………………………………………………………...13
3.2.1 胸主動脈血管環張力反應試驗………………………………………....13
3.2.1.1 實驗分組………………………………………………………….....13
3.2.1.2 判定母鼠的動情週期…………………………………………….....14
3.2.1.3 胸主動脈血管環的製備………………………………………….....14
3.2.1.4 血管反應實驗前的血管活性測試……………………………….....15
3.2.1.5 ACh刺激的血管內皮依賴性之鬆弛反應……………………...…..16
3.2.1.6 BAY 41-2272刺激的血管鬆弛反應………………………………..16
3.2.1.7 Zaprinast刺激的血管鬆弛反應…………………………………......17
3.2.1.8 8-Br-cGMP刺激的血管鬆弛反應…………………………………...17
3.2.1.9 浸泡ODQ一段時間後,執行8-Br-cGMP刺激的血管鬆弛反應…..17
3.2.1.10 評估胸主動脈血管環張力反應……………………………….…...18
3.2.2定量聚合酶鏈鎖反應…………………………………………………..18
3.2.2.1 實驗分組………………………………………………………….….18
3.2.2.2 卵巢切除手術………………………………………….…………….20
3.2.2.3 睪丸去除手術……………………………………….…………….....20
3.2.2.4 三種性激素之配製與補充方法……………………….………….....21
3.2.2.5 定量聚合酶鏈鎖反應………………………………………….….....22
3.2.2.6 q-PCR實驗結果評估方法…………………………………………...23
3.3 統計分析……………………………………………………………….……...24
第四章 實驗結果…………………………………………………….……………..25
4.1 血管環的張力反應試驗………………………………….…………………...25
4.1.1 代表性實驗結果:ACh作用後血管環對ODQ與L-NNA之反應……..25
4.1.2 ACh造成之血管內皮層依賴性鬆弛反應………………………...….….25
4.1.3 8-Br-cGMP造成之血管鬆弛反應………………………………………..26
4.1.4 ODQ對8-Br-cGMP造成之血管鬆弛反應之作用……………………....26
4.1.5 於血管內皮層存在下,BAY 41-2272造成之血管舒張反應…………...27
4.1.6 血管內皮層去除後,BAY 41-2272造成之血管舒張反應……………...27
4.1.7 Zaprinast刺激的血管鬆弛反應……………………………………….….28
4.1.8 血管內皮層釋出的基礎NO效用……………………………….......29
4.2 eNOS與PKG-I的mRNA表現量………………………………………..…....29
4.2.1 血管張力實驗組eNOS的mRNA表現量…………………………….…29
4.2.2 血管張力實驗組PKG-I的mRNA表現量……………………………....30
4.2.3 雄性激素補充組PKG-I的mRNA表現量……………………………....30
4.2.4 雌性激素補充組PKG-I的mRNA表現量…………………………..…..31
第五章 討論………………………………………………………………………...48
5.1 ACh經由NO-cGMP途徑造成血管鬆弛反應存在性別差異………………..48
5.2 外源性8-Br-cGMP的造成血管鬆弛反應存在性別差異…………………...49
5.3 卵巢性荷爾蒙對血管內PKG-I的mRNA調節……………….……………..51
5.4 睪丸性荷爾蒙對血管內PKG-I的mRNA調節………………..…………….53
5.5 內源性cGMP亦造成PKG-I調控的血管鬆弛反應存在性別差異…………53
5.6 血管平滑肌內NO-cGMP途徑中其他存在性別差異之可能……………….54
5.7 比較年齡對照母鼠和體重對照母鼠兩種模型………………..……………..57
5.8 將胸主動脈與腹主動脈視為不同檢體進行研究…….……….……………..59
第六章 結論……………………………………………………………….………..61
參考文獻……………………………………………………………….……………..62
圖表目錄

圖一、以ACh進行內皮依賴性舒張反應的實驗結果圖形………………………....32
圖二、累積濃度ACh對SD大白鼠血管環的影響曲線圖…………………………33
圖三、累積濃度8-Br-cGMP對SD大白鼠血管環的影響曲線圖…………………34
圖四、待1 μM PE使收縮完全,給10 μM ODQ浸泡十五分鐘,再給予累積濃度
8-Br-cGMP,對SD大白鼠血管環的影響曲線圖………..………………...35
圖五、累積濃度BAY 41-2272對內皮完整的SD大白鼠血管環的影響曲線圖….36
圖六、累積濃度BAY 41-2272對內皮去除的SD大白鼠血管環的影響曲線圖…37
圖七、累積濃度zaprinast對SD大白鼠血管環的影響曲線圖…………………..…38
圖八、血管內皮層釋放之基礎NO效果比較圖……………………………………..39
圖九、在公母鼠胸主動脈eNOS的mRNA表現量………………………………….40
圖十、在公母鼠腹主動脈eNOS的mRNA表現量………………………………….41
圖十一、在公母鼠胸主動脈PKG-I的mRNA表現量………………………………42
圖十二、在公母鼠腹主動脈PKG-I的mRNA表現量………………………………43
圖十三、在雄性激素調節組胸主動脈PKG-I的mRNA表現量……………………44
圖十四、在雄性激素調節組腹主動脈PKG-I的mRNA表現量……………………45
圖十五、在雌性激素調節組胸主動脈PKG-I的mRNA表現量……………………46
圖十六、在雌性激素調節組腹主動脈PKG-I的mRNA表現量……………………47
1. Altura BM, Altura BT. Heterogeneity of drug receptors in different segments of rabbit thoracic aorta. European Journal of Pharmacology. 12(1): pp. 44-52, 1970.
2. Andric SA, Janjic MM, Stojkov NJ, Kostic TS. Protein kinase G-mediated stimulation of basal Leydig cell steroidogenesis. American Journal of Physiology - Endocrinology and Metabolism. 293(5): pp. E1399-E1408, 2007.
3. Barrett-Connor E, Bush TL. Estrogen and coronary heart disease in women. JAMA : The Journal of the American Medical Association. 265(14): pp. 1861-1867, 1991.
4. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacological Reviews. 58(3): pp. 488-520, 2006.
5. Braner DA, Fineman JR, Chang R, Soifer SJ. M&B 22948, a cGMP phosphodiesterase inhibitor, is a pulmonary vasodilator in lambs. American Journal of Physiology - Heart and Circulatory Physiology. 264(1): pp. 252-258, 1993.
6. Caulin-Glaser T, García-Cardeña G, Sarrel P, Sessa WC, Bender JR. 17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circulation Research. 81(5): pp. 885–892, 1997.
7. Ceballos G, Figueroa L, Rubio I, Gallo G, Garcia A, Martinez A, Yañez R, Perez J, Morato T, Chamorro G. Acute and nongenomic effects of testosterone on isolated and perfused rat heart. Journal of Cardiovascular Pharmacology. 33(5): pp. 691-697, 1999.
8. Chen ZJ, Che D, Vetter M, Liu S, Chang CH. 17β-Estradiol inhibits soluble guanylate cyclase activity through a protein tyrosine phosphatase in PC12 cells. The Journal of Steroid Biochemistry and Molecular Biology. 78(5): pp. 451-458, 2001.
9. Collins P, Rosano GM, Jiang C, Lindsay D, Sarrel PM, Poole-Wilson PA. Cardiovascular protection by oestrogen--a calcium antagonist effect? Lancet. 341(8855): pp. 1264-1265, 1993.
10. Corbin JD, Francis SH. Substrate- and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP. The Journal of Biological Chemistry. 274(20): pp. 13729-13732, 1999.
11. Corbin JD, Turko IV, Beasley A, Francis SH. Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. European Journal of Biochemistry. 267(9): pp. 2760-2767, 2000.
12. Darkow DJ, Lu L, White RE. Estrogen relaxation of coronary artery smooth muscle is mediated by nitric oxide and cGMP. American Pournal of Physiology - Heart and Circulatory Physiology. 272(6): pp. H2765-H2773, 1997.
13. Denninger JW, Marletta MA. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochimica et Biophysica Acta. 1411(2-3): pp. 334-350, 1999.
14. Dubey RK, Oparil S, Imthurn B, Jackson EK. Sex hormones and hypertension. Cardiovascular Research. 53(3): pp. 688-708, 2002.
15. Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HH, Stasch JP. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nature Reviews Drug Discovery. 5(9): pp. 755-768, 2006.
16. Furchgott RF, Bhadrakom. Reactions of stripes of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. The Journal of Pharmacology and Experimental Therapeutics. 108(2): pp. 129-143, 1953.
17. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 288(5789): pp. 373-376, 1980.
18. Garnovskaia MN, Dumler IL, Etingof RN. Role of cyclic nucleotide phosphodiesterase in the effect of estradiol on uterine tissue. Biulleten' Eksperimental'noi Biologii i Meditsiny. 93(6): pp. 110-112, 1982.
19. Geary GG, Krause DN, Duckles SP. Estrogen reduces mouse cerebral artery tone through endothelial NOS- and cyclooxygenase-dependent mechanisms. American Journal of Physiology - Heart and Circulatory Physiology. 279(2): pp. H511-H519, 2000.
20. Geiselhöringer A, Werner M, Sigl K, Smital P, Wörner R, Acheo L, Stieber J, Weinmeister P, Feil R, Feil S, Wegener J, Hofmann F, Schlossmann J. IRAG is essential for relaxation of receptor-triggered smooth musclecontraction by cGMP kinase. The EMBO Journal. 23(21): pp. 4222-4231, 2004.
21. Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nature Reviews Drug Discovery. 5(8): pp. 689-702, 2006.
22. Goh HH, Loke DF, Ratnam SS. The impact of long-term testosterone replacement therapy on lipid and lipoprotein profiles in women. Maturitas. 21(1): pp. 65-70, 1995.
23. Hayashi T, Fukuto JM, Ignarro LJ, Chaudhuri G. Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: implications for atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America. 89(23): pp. 11259-11263, 1992.
24. Hickson RC, Galassi TM, Kurowski TT, Daniels DG, Chatterton RT Jr. Androgen and glucocorticoid mechanisms in exercise induced cardiac hypertrophy. The American Journal of Physiology - Heart and Circulatory Physiology. 246(6): pp. H761-H767, 1984.
25. Ho SM, Tang WY, Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Research. 66(11): pp. 5624-5632, 2006.
26. Hofmann F. The biology of cyclic GMP-dependent protein kinases. The Journal of Biological Chemistry. 280(1): pp.1-4, 2005.
27. Honda H, Ushijima D, Ishihara H, Morales-Ruiz M, Jiménez W, Pérez-Sala D, Ros J, Leivas A, Lamas S, Rivera F, Arroyo V. Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. Hepatology. 24(6): pp. 1481-1486, 1996.
28. Honda H, Ushijima D, Ishihara H, Yanase M, Kogo H. A regional variation of acetylcholine-induced relaxation in different segments of rat aorta. Physiology and Behavior. 63(1): pp. 55-58, 1997.
29. Hurn PD, Macrae IM. Estrogen as a neuroprotectant in stroke. Journal of Cerebral Blood Flow and Metabolism. 20(4): pp. 631-652, 2000.
30. Iams SG, Wexler BC. Inhibition of the development of spontaneous hypertension in SH rats by gonadectomy or estradiol. The Journal of Laboratory and Clinical Medicine. 94(4): pp. 608-616, 1976.
31. Jiang C, Sarrel PM, Poole-Wilson PA, Collins P. Acute effect of 17 beta-estradiol on rabbit coronary artery contractile responses to endothelin-1. American Journal of Physiology - Heart and Circulatory Physiology. 263(1): pp. H271-H275, 1992.
32. Jiang CW, Sarrel PM, Lindsay DC, Poole-Wilson PA, Collins P. Endothelium-independent relaxation of rabbit coronary artery by 17 beta-oestradiol in vitro. British Journal of Pharmacology. 104(4): pp. 1033-1037, 1991.
33. Jiang CW, Sarrel PM, Lindsay DC, Poole-Wilson PA, Collins P. Progesterone induces endothelium-independent relaxation of rabbit coronary artery in vitro. European Journal of Pharmacology. 211(2): pp. 163-167, 1992.
34. Jimena P. Cabilla, Maria del Carmen Diaz, Leticia I. Machiavelli, Ariel H. Poliandri, Fernanda A. Quinteros, Mercedes Lasaga, Beatriz H. Duvilanski. 17β-Estradiol modifies nitric oxide-sensitive guanylyl cyclase expression and down-regulates its activity in rat anterior pituitary gland. Endocrinology. 147(9): pp. 4311-4318, 2006.
35. Jones RD, Nettleship JE, Kapoor D, Jones HT, Channer KS. Testosterone and atherosclerosis in aging men: purported association and clinical implications. American Journal of Cardiovascular Drugs : Drugs, Devices, and Other Interventions. 5(3): pp. 141-154, 2005
36. Kähönen M, Tolvanen JP, Sallinen K, Wu X, Pörsti I. Influence of gender on control of arterial tone in experimental hypertension. American Journal of Physiology - Heart and Circulatory Physiology. 275(1): pp. H15-H22, 1998.
37. Kan WH, Hsu JT, Schwacha MG, Choudhry MA, Bland KI, Chaudry IH. Estrogen ameliorates trauma-hemorrhage-induced lung injury via endothelial nitric oxide synthase-dependent activation of protein kinase G. Annals of Surgery. 248(2): pp. 294-302, 2008.
38. Kauser K, Rubanyi GM. Gender difference in bioassayable endothelium-derived nitric oxide from isolated rat aortae. American Journal of Physiology - Heart and Circulatory Physiology. 267(6): pp. H2311-H2317, 1994.
39. Kauser K, Rubanyi GM. Gender difference in endothelial dysfunction in the aorta of spontaneously hypertensive rats. Hypertension. 25(4): pp. 517-523, 1995.
40. Krumenacker JS, Hyder SM, Murad F. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus. Proceedings of the National Academy of Sciences of the United States of America. 98(2): pp. 717-722, 2001.
41. Lin AD, Levin RM, Kogan BA, Whitbeck C, Leggett RE, Kearns C, Mannikarottu A. Alteration of contractile and regulatory proteins in estrogen-induced hypertrophy of female rabbit bladder. Urology. 68(5): pp. 1139-1143, 2006
42. Lin AL, Gonzalez R Jr, Carey KD, Shain SA. Estradiol-17 beta affects estrogen receptor distribution and elevates progesterone receptor content in baboon aorta. Arteriosclerosis. 6(5): pp. 495–504, 1986.
43. Lin CS, Liu X, Tu R, Chow S, Lue TF. Age-related decrease of protein kinase G activation in vascular smooth muscle cells. Biochemical and Biophysical Research Communications. 287(1): pp. 244-248, 2001.
44. Lohmann SM, Vaandrager AB, Smolenski A, Walter U, De Jonge HR. Distinct and specific functions of cGMP-dependent protein kinases. Trends in Biochemical Sciences. 22(8): pp. 307-312, 1997.
45. MacRitchie AN, Jun SS, Chen Z, German Z, Yuhanna IS, Sherman TS, Shaul PW. Estrogen upregulates endothelial nitric oxide synthase gene expression in fetal pulmonary artery endothelium. Circulation Research. 81(3): pp. 355-362, 1997.
46. Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: some helpful considerations. Brazilian Journal of Biology. 62(4A): pp. 609-614, 2002.
47. Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger RJ. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation. 98(3): pp. 256-261, 1998.
48. Medina RA, Aranda E, Verdugo C, Kato S, Owen GI. The action of ovarian hormones in cardiovascular disease. Biological Research. 36(3-4): pp. 325-341, 2003.
49. Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ. Evidence for the inhibitory role of guanosine 3', 5'-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood. 57(5): pp. 946-955, 1981.
50. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. The New England Journal of Medicine. 340(23): pp. 1801-1811, 1999.
51. Michimata T, Imamura M, Mizuma H, Murakami M, Iriuchijima T. Sex and age differences in soluble guanylate cyclase activity in human platelets. Life Sciences. 58(5): pp. 415-419, 1995.
52. Miller VM. Gender and vascular reactivity. Lupus. 8(5): pp. 409-415, 1999.
53. Morey AK, Pedram A, Razandi M, Prins BA, Hu RM, Biesiada E, Levin ER. Estrogen and progesterone inhibit vascular smooth muscle proliferation. Endocrinology. 138(8): pp. 3330-3339, 1997.
54. Morey AK, Razandi M, Pedram A, Hu RM, Prins BA, Levin ER. Oestrogen and progesterone inhibit the stimulated production of endothelin-1. The Biochemical Journal. 330(1): pp. 1097-1105, 1998.
55. Mueck AO, Seeger H. Progestogens and target tissues: vascular systems. Maturitas. 62(4): pp. 356-361, 2009.
56. Murphy JG, Khalil RA. Gender-specific reduction in contractility and [Ca2+]i in vascular smooth muscle cells of female rat. American Journal of Physiology - Cell Physiology. 278(4): pp. C834-C844, 2000.
57. Nettleship JE, Jones RD, Channer KS, Jones TH. Testosterone and coronary artery disease. Frontiers of Hormone Research. 37: pp. 91-107, 2009.
58. Nimmegeers S, Sips P, Buys E, Brouckaert P, Van de Voorde J. Functional role of the soluble guanylyl cyclase α1 subunit in vascular smooth muscle relaxation. Cardiovascular Research. 76(1): pp. 149-159, 2007.
59. Notelovitz M. Effect of natural oestrogens on blood pressure and weight in postmenopausal women. South African Medical Journal. 49(55): pp. 2251-2254, 1975.
60. Orshal JM, Khalil RA. Gender, sex hormones, and vascular tone. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 286(2): pp. R233-R249, 2004.
61. Palacios J, Marusic ET, Lopez NC, Gonzalez M, Michea L. Estradiol-induced expression of Na+-K+-ATPase catalytic isoforms in rat arteries: gender differences in activity mediated by nitric oxide donors. American Journal of Physiology - Heart and Circulatory Physiology. 286(5): pp. H1793-H1800, 2004
62. PEPI Trial Writing Group. Effects of estrogen or estrogen / progestin regimens on heart disease risk factors in postmenopausal women. The postmenopausal estrogen / protestin interventions (PEPI) trial. JAMA : The Journal of the American Medical Association. 273(3): pp. 199-208, 1995.
63. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszodi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fassler R, Hofmann F. Defective smooth muscle regulation in cGMP kinase I-deficient mice. The Embo Journal. 17(11): pp. 3045-3051, 1998.
64. Polson JB, Strada SJ. Cyclic nucleotide phosphodiesterases and vascular smooth muscle. Annual Review of Pharmacology and Toxicology. 36: pp. 403-427, 1996.
65. Reckelhoff JF, Granger JP. Role of androgens in mediating hypertension and renal injury. Clinical and Experimental Pharmacology and Physiology. 26(2): pp. 127-131, 1999.
66. Reckelhoff JF, Zhang H, Srivastava K. Gender differences in the development of hypertension in SHR: role of the renin angiotensin system. Hypertension. 35(1): pp. 480-483, 2000.
67. Sakuma I, Liu MY, Sato A, Hayashi T, Iguchi A, Kitabatake A, Hattori Y. Endothelium-dependent hyperpolarization and relaxation in mesenteric arteries of middle-aged rats: Influence of oestrogen. British Journal of Pharmacology. 135(1): pp. 48-54, 2002.
68. Scavone C, Glezer I, Demarchi Munhoz C, de Sena Bernardes C, Pekelmann Markus R. Influence of age on nitric oxide modulatory action on Na+, K+-ATPase activity through cyclic GMP pathway in proximal rat trachea. European Journal of Pharmacology. 388(1): pp. 1-7, 2000.
69. Scavone C, Munhoz CD, Kawamoto EM, Glezer I, de Sá Lima L, Marcourakis T, Markus RP. Age-related changes in cyclic GMP and PKG-stimulated cerebellar Na,K-ATPase activity. Neurobiology of Aging. 26(6): pp. 907-916, 2005.
70. Schlossmann J, Hofmann F. cGMP-dependent protein kinases in drug discovery. Drug Discovery Today. 10(9): pp. 627-634, 2005.
71. Seely EW,Walsh BW, Gerhard MD, Williams GH. Estradiol with or without progesterone and ambulatory blood pressure in post-menopausal women. Hypertension. 33(5): pp. 1190-1194, 1999.
72. Selles J, Polini N, Alvarez C, Massheimer V. Progesterone and 17 beta-estradiol acutely stimulate nitric oxide synthase activity in rat aorta and inhibit platelet aggregation. Life Sciences. 69(7): pp. 815–827, 2001
73. Shan J, Resnick LM, Liu QY, Wu XC, Barbagallo M, Pang PK. Vascular effects of 17 beta-estradiol in male Sprague-Dawley rats. American Journal of Physiology - Heart and Circulatory Physiology. 266(3): pp. H967-H973, 1994.
74. Sharabi FM, Daabees TT, El-Metwally MA, Senbel AM. Effect of sildenafil on the isolated rat aortic rings. Fundamental and Clinical Pharmacology. 19(4): pp. 449-456, 2005.
75. Shi F, Perez E, Wang T, Peitz B, Lapolt PS. Stage- and cell-specific expression of soluble guanylyl cyclase alpha and beta subunits, cGMP-dependent protein kinase I alpha and beta, and cyclic nucleotide-gated channel subunit 1 in the rat testis. Journal of Andrology. 26(2): pp. 258-263, 2005.
76. Simoncini T, Mannella P, Fornari L, Caruso A, Varone G, Genazzani AR. In vitro effects of progesterone and progestins on vascular cells. Steroids. 68(10-13): pp. 831-836, 2003.
77. Sitruk-Ware R. Progestins and cardiovascular risk markers. Steroids. 65(10-11): pp. 651-658, 2000.
78. Smits GJ, Lefebvre RA. Influence of age on the signal transduction pathway of non-adrenergic non-cholinergic neurotransmitters in the rat gastric fundus. British Journal of Pharmacology. 114(3): pp. 640-647, 1995.
79. Sobel MI, Winkel CA, Macy LB, Liao P, Bjornsson TD. The regulation of plasminogen activators and plasminogen activator inhibitor type 1 in endothelial cells by sex hormones. American Journal of Obstetrics and Gynecology. 173(3): pp. 801-808, 1995.
80. Somlyo AV, Sandberg RL, Somlyo AP. Pharmacologically heterogeneous smooth muscle cell distribution in blood vessels. The Journal of Pharmacology and Experimental Therapeutics. 149(1): pp. 106-112, 1965.
81. Spencer CP, Cooper AJ, Stevenson JC. Clinical trials report: oncologic, endocrine & metabolic: Clinical trials in progress with hormone replacement therapy. Expert Opinion on Investigational Drugs. 5(6): pp. 739-749, 1996.
82. Stirone C, Boroujerdi A, Duckles SP, Krause DN. Estrogen receptor activation of phosphoinositide-3 kinase, Akt, and nitric oxide signaling in cerebral blood vessels: rapid and long-term effects. Molecular Pharmacology. 67(1): pp. 105–113, 2005.
83. Suzuki T, Nakamura Y, Moriya T, Sasano H. Effects of steroid hormones on vascular functions. Microvasculr Research and Technique. 60(1): pp. 76-84, 2003.
84. Teede H, van der Zypp A, Majewski H. Gender differences in protein kinase G-mediated vasorelaxation of rat aorta. Clinical Science. 100(5): pp. 473-479, 2001.
85. Tep-areenan P, Kendall DA, Randall MD. Mechanisms of vasorelaxation to testosterone in the rat aorta. European Journal of Pharmacology. 465(1-2): pp. 125-132, 2003.
86. The writing group for the PEPI trial. Cardiovascular risk factors and combined estrogen-progestin replacement therapy: a placebo-controlled study with nomegestrol acetate and estradiol. JAMA : The Journal of the American Medical Association. 273(3): pp. 199-208, 1995.
87. Thomas MK, Francis SH, Corbin JD. Substrate- and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP. The Journal of Biological Chemistry. 265(25): pp. 14971-14978, 1990.
88. Thompson J, Khalil RA. Gender differences in the regulation of vascular tone. Clinical and Experimental Pharmacology and Physiology. 30(1-2): pp. 1-15, 2003.
89. Tostes RC, Nigro D, Fortes ZB, Carvalho MH. Effects of estrogen on the vascular system. Brazilian Journal of Medical and Biological Research. 36(9): pp. 1143-1158, 2003.
90. Vázquez F, Rodríguez-Manzaneque JC, Lydon JP, Edwards DP, O'Malley BW, Iruela-Arispe ML. Progesterone regulates proliferation of endothelial cells. The Journal of Biological Chemistry. 274(4): pp. 2185-2192, 1999.
91. Villar IC, Francis S, Webb A, Hobbs AJ, Ahluwalia A. Novel aspects of endothelium-dependent regulation of vascular tone. Kidney International. 70(5): pp. 840-853, 2006.
92. Webb CM, McNeill JG, Hayward CS, de Zeigler D, Collins P. Effect of testosterone on coronary blood flow velocity to acetylcholine in men with coronary artery disease. Circulation. 100(16): pp. 1690-1696, 1999.
93. Wellman GC, Bonev AD, Nelson MT, Brayden JE. Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca2+-dependent K+ channels. Circulation Research. 79(5): pp. 1024-1030, 1996.
94. White RM, Rivera CO, Davison CA. Nitric oxide-dependent and -independent mechanisms account for gender differences in vasodilation to acetylcholine. The Journal of Pharmacology and Experimental Therapeutics. 292(1): pp. 375-380, 2000.
95. Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TA. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of serine 695 in response to cyclic nucleotides. The Journal of Biological Chemistry. 279(33): pp. 34496-34504, 2004.
96. Word RA, Cornwell TL. Regulation of cGMP-induced relaxation and cGMP-dependent protein kinase in rat myometrium during pregnancy. American Journal of Physiology - Cell Physiology. 274(3): pp. C748-C756, 1998.
97. Yu SM, Cheng ZJ, Kuo SC. Endothelium-dependent relaxation of rat aorta by butein, a novel cyclic AMP-specific phosphodiesterase inhibitor. European Journal of Pharmacology. 280(1): pp. 69-77, 1995.
98. Yue P, Chatterjee K, Beale C, Poole-Wilson PA, Collins P. Testosterone relaxes rabbit coronary arteries and aorta, Circulation. 91(4): pp. 1154-1160, 1995.
99. Zhang DX, Gauthier KM, Chawengsub Y, Campbell WB. ACh-induced relaxations of rabbit small mesenteric arteries: role of arachidonic acid metabolites and K+. American Journal of Physiology - Heart and Circulatory Physiology. 293(1): pp. H152-H159, 2007.
100. 實驗動物管理與使用指南編輯委員會,《實驗動物管理與使用指南》,第三版,台北,中華實驗動物學會,民國九十四年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top