(3.92.96.236) 您好!臺灣時間:2021/05/09 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:周志行
研究生(外文):Chih Hsing Chou
論文名稱:探討腫瘤壞死因子刺激人類腎絲球間質細胞調控黏附分子表現之機轉
論文名稱(外文):Mechanisms of Tumor Necrosis Factor-alpha-induced Vascular Cell Adhesion Molecule-1 (VCAM-1) Expression in Human Renal Mesangial Cells
指導教授:楊春茂楊春茂引用關係
指導教授(外文):C. M. Yang
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:134
中文關鍵詞:腎絲球間質細胞腫瘤壞死因子血管黏附因子訊號傳遞
外文關鍵詞:glomerular messangial cellstumor necrosis factor (TNF)adhesion molecules (VCAM-1)signal transduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
腎絲球間質細胞為一群包圍在腎絲球微血管網叢內的特殊細胞群,在正常生理功能中它扮演協助腎絲球調節過濾液平衡,結構上則提供腎絲球體支持以及與其它鄰近細胞交互作用。過去研究指出在慢性腎臟疾病致病進程中,受到許多細胞激素(例如:腫瘤壞死因子;TNF-alpha)刺激之下,腎絲球間質細胞會表現許多發炎相關蛋白以及細胞黏附蛋白分子,而這樣的反應將吸引更多免疫球細胞的黏附、浸潤,進而導致更嚴峻的發炎反應。之前的研究已經證實在慢性腎臟疾病中,腫瘤壞死因子(TNF-alpha)表現量增加,並且進而刺激腎絲球間質細胞表現細胞黏附蛋白分子vascular cell adhesion molecule-1 (VCAM-1)。然而,在TNF-alpha刺激之下表現VCAM-1的訊號傳遞路徑,以及與免疫球細胞的黏附作用之機轉至今仍待進一步研究。在本論文中,針對人類腎絲球間質細胞,探討TNF-alpha如何透過訊號傳遞路徑調控VCAM-1表現。利用西方墨點轉漬法以及RT-PCR分析,我們發現TNF-的確可以誘發VCAM-1蛋白質和mRNA表現,以及活化MAPKs (ERK1/2, p38 MAPK, JNK1/2)與轉錄因子AP-1和NF-kappaB;並且在transactivation路徑中可以活化c-Src, EGFR, PI3K/Akt, PKC, c-Jun的磷酸化,然而當我們前處理上述訊號路徑蛋白激酶的個別藥理性抑制劑,可以發現磷酸化的情形以及VCAM-1的表現都會受到明顯抑制。因此,我們推論TNF-刺激人類腎絲球間質細胞透過活化MAPKs以及EGFR transactivation路徑誘導VCAM-1表現,並且MAPKs(p38 MAPK與JNK1/2)和AP-1的活化作用亦會受到transactivation路徑的調控。另一方面在TNF-的作用之下,透過細胞膜上專一性受體TNFR1,接著活化受體輔助蛋白TRAF2與IKK形成聚合體,之後促進IkappaB分解,進而使得活化態的NF-kappaB進入細胞核中參與VCAM-1基因的調控。同時當細胞轉染(Transfection) p38, JNK2, c-Src, EGFR, Akt, c-Jun, c-Fos以及p65的siRNA後,可以發現個別明顯抑制了TNF-alpha所調控VCAM-1表現。為了進一步探討這樣的調控機轉,我們利用promoter luciferase assay與免疫螢光染色技術,在前處理相關訊號路徑蛋白基酶的藥理性抑制劑後,可以發現分別抑制luciferase activity以及p65轉錄因子進入細胞核。此外透過免疫沉澱法(co-IP)以及染色質免疫沉澱分析(ChIP assay)同步證實,轉錄因子AP-1與NF-B以及p300等,對於TNF-作用之下調控VCAM-1的重要性。
TNF-alpha誘發VCAM-1表現之外,同時也增加單核白血球(monocyte)與腎絲球間質細胞之間黏附作用,而這樣的作用也可以受到anti-VCAM-1、anti-ICAM-1、U0126、SB202190、SP600126、genistein、PP1、AG1478、LY294002、GF109203X、Rottlerin、Tanshinone IIA、Bay11-7082以及GR343等藥理性抑制劑所抑制。根據我們的實驗結果顯示,TNF-誘導人類腎絲球間質細胞表現VCAM-1,過程透過兩個獨立的訊號調控路徑。首先,透過活化c-Src、EGFR transactivation、PI3K/Akt、PKC、JNK和AP-1來達成。除此之外,藉由細胞膜上受體TNFR1及其受體輔助蛋白TRAF2與IKK形成聚合體來活化NF-kappaB路徑。並且轉錄因子AP-1與NF-B都可以和p300交互作用,協同調控VCAM-1表現。本篇論文對於慢性腎臟發炎疾病中,在人類腎絲球間質細胞上,TNF-alpha調控VCAM-1的表現以及單核白血球黏附作用提供了更新且更完整的訊號調控機轉,希望對於腎臟發炎相關致病機轉以及未來臨床治療研究提供參考方向。
Tumor necrosis factor-alpha (TNF-alpha), a potent pro-inflammatory cytokine, is significantly increased in the kidneys with inflammatory renal diseases. TNF-alpha-induced inflammatory response on renal glomerular resident cells, such as mesangial cells, are involved in a range of kidney disorders. Vascular cell adhesion molecule-1 (VCAM-1), which belongs to immunoglobulin superfamily, is one kind of adhesion molecules participating in the process of PMN transmigration. Up-regulation of VCAM-1 expression has been shown in glomerular mesangial cells to pro-inflammatory mediators such as TNF-alpha and IL-1. The expression of VCAM-1 enhances the interaction of PMN with glomerular resident cells, and strongly linked to the severity of kidney inflammatory diseases.
In glomerular resident cells, TNF-alpha can induce expression of adhesion molecules and then attract leukocytes adhesion. However, the mechanisms underlying TNF-alpha-induced VCAM-1 expression in human renal glomerular mesangial cells (HRMCs) remain unclear. Western blot, RT-PCR, and THP-1/monocytes adhesion analyses showed that in HRMCs, TNF-alpha induced VCAM-1 mRNA and protein expression in a time-dependent manner, which were attenuated by the inhibitors of c-Src (PP1), EGF receptor (AG1478), PI3K (LY294002), PKC (GF109203X, Ro31-8220 and rottlerin), MEK1/2 (U0126), p38 MAPK (SB202190) and JNK (SP600125), or transfection with siRNA of c-Src, EGFR, Akt, p38 MAPK, JNK2, c-Jun, c-Fos and p65. These results suggest that c-Src-dependent EGFR transactivation participates in VCAM-1 expression induced by TNF-alpha. Accordingly, TNF--stimulated phosphorylation of p38 MAPK and JNK was inhibited by pretreatment with PP1, AG1478, LY294002, GF109203X, rottlerin, SB202190, or SP600125. TNF-alpha induced VCAM-1 expression was blocked by selective inhibitors of AP-1 (tanshinone IIA) and NF-B (Bay11-7082). Moreover, TNF-alpha-stimulated activation of VCAM-1 promoter activity was blocked by these selective inhibitors.
In this study we investigated the effect of TNF- on expression of VCAM-1 in human renal glomerular mesangial cells. These findings indicated that TNF-alpha induced VCAM-1 expression at the transcriptional and translational levels, which were mediated through two independent pathways. First, TNF-alpha activated c-Src-dependent EGFR transactivation, PI3K/Akt, PKC, JNK, and c-Jun/AP-1 signaling pathways in HRMCs. In addition, TNF-alpha-stimulated TNFR1 induced association of TRAF2, which promoted recruitment with IKK resulting in NF-kappaB activation and VCAM-1 expression. These results provide new insights into the mechanisms of TNF-alpha action which may be therapeutic value in kidney diseases.
目 錄 (Contents)
論文指導教授推薦書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
論文口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
國家圖書館授權書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii
長庚大學博碩士紙本論文著作授權書. . . . . . . . . . . . . . . . . . . . . . . . . .iv
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v縮寫表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi抑制劑表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii中文摘要 (Abstract in Chinese). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix英文摘要 (Abstract in English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi緒論 (Introduction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Specific aims. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30材料跟方法 (Materials and Methods) . . . . . . . . . . . . . . . . . . . . . . . . . .32實驗結果 (Results) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

PART I: Involvement of MAPKs and transcription factors (NF-B and
AP-1) in TNF--induced VCAM-1 Expression in Human Renal Mesangial Cells (HRMCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

PART II: TNF--induced VCAM-1 Expression via c-Src-dependent, EGFR transactivation, PI3K/Akt, PKC linking to AP-1 in Human Renal Mesangial Cells (HRMCs) . . . . . . . . . . . . . . 49

圖表 (Figures and Legends) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
討論 (Discussion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
參考文獻 (References) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
References
Adhikary L, Chow F, Nikolic-Paterson DJ, Stambe C, Dowling J, Atkins RC, Tesch GH (2004). Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia 47:1210-1222.
Anders HJ, Ninichuk V, Schlondorff D (2006). Progression of kidney disease: blocking leukocyte recruitment with chemokine receptor CCR1 antagonists. Kidney Int 69:29-32.
Anders HJ, Vielhauer V, Schlondorff D (2003). Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int 63:401-415.
Atkins RC (1995). Interleukin-1 in crescentic glomerulonephritis. Kidney Int 48:576-586.
Bazzoni F, Beutler B (1996). The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717-1725.
Board R, Jayson GC (2005). Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Updat 8:75-83.
Bonizzi G, Karin M (2004). The two NF-B activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280-288.
Bradley JR (2008). TNF-mediated inflammatory disease. J Pathol 214:149-160.
Breitwieser W, Lyons S, Flenniken AM, Ashton G, Bruder G, Willington M, Lacaud G, Kouskoff V, Jones N (2007). Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes Dev 21:2069-2082.
Carvalho-Pinto CE, Garcia MI, Mellado M, Rodriguez-Frade JM, Martin-Caballero J, Flores J, Martinez A, Balomenos D (2002). Autocrine production of IFN- by macrophages controls their recruitment to kidney and the development of glomerulonephritis in MRL/lpr mice. J Immunol 169:1058-1067.
Chung JY, Park YC, Ye H, Wu H (2002). All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115:679-688.
Couchman JR, Beavan LA, McCarthy KJ (1994). Glomerular matrix: synthesis, turnover and role in mesangial expansion. Kidney Int 45:328-335.
Curnock AP, Ward SG (2003). Development and characterisation of tetracycline-regulated phosphoinositide 3-kinase mutants: assessing the role of multiple phosphoinositide 3-kinases in chemokine signaling. J Immunol Methods 273:29-41.
Dal CA (1995). Adhesion molecules in renal disease. Kidney Int 48:1687-1696.
Danese S, Semeraro S, Marini M, Roberto I, Armuzzi A, Papa A, Gasbarrini A (2005). Adhesion molecules in inflammatory bowel disease: therapeutic implications for gut inflammation. Dig Liver Dis 37:811-818.
Danielsen AJ, Maihle NJ (2002). The EGF/ErbB receptor family and apoptosis. Growth Factors 20:1-15.
Davies M (1994). The mesangial cell: a tissue culture view. Kidney Int 45:320-327.
De BK, Vanden BW, Haegeman G (2003). The interplay between the glucocorticoid receptor and nuclear factor-B or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 24:488-522.
De CP, Starace D, Starace G, Filippini A, Stefanini M, Ziparo E (1999). Activation of Jun N-terminal kinase/stress-activated protein kinase pathway by tumor necrosis factor  leads to intercellular adhesion molecule-1 expression. J Biol Chem 274:28978-28982.
Ding G, Zhang A, Huang S, Pan X, Zhen G, Chen R, Yang T (2007). ANG II induces c-Jun NH2-terminal kinase activation and proliferation of human mesangial cells via redox-sensitive transactivation of the EGFR. Am J Physiol Renal Physiol 293:F1889-F1897.
Egido J, Gomez-Chiarri M, Ortiz A, Bustos C, Alonso J, Gomez-Guerrero C, Gomez-Garre D, Lopez-Armada MJ, Plaza J, Gonzalez E (1993). Role of tumor necrosis factor- in the pathogenesis of glomerular diseases. Kidney Int Suppl 39:S59-S64.
Elangbam CS, Qualls CW, Jr., Dahlgren RR (1997). Cell adhesion molecules--update. Vet Pathol 34:61-73.
Ernandez T, Mayadas T (2009). Immunoregulatory role of TNF in inflammatory kidney diseases. Kidney Int.
Feldmann M, Pusey CD (2006). Is there a role for TNF- in anti-neutrophil cytoplasmic antibody-associated vasculitis? Lessons from other chronic inflammatory diseases. J Am Soc Nephrol 17:1243-1252.
Francescato HD, Costa RS, Junior FB, Coimbra TM (2007). Effect of JNK inhibition on cisplatin-induced renal damage. Nephrol Dial Transplant 22:2138-2148.
Fresno Vara JA, Casado E, de CJ, Cejas P, Belda-Iniesta C, Gonzalez-Baron M (2004). PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193-204.
Fujii M, Inoguchi T, Maeda Y, Sasaki S, Sawada F, Saito R, Kobayashi K, Sumimoto H, Takayanagi R (2007). Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Kidney Int 72:473-480.
Gaur U, Aggarwal BB (2003). Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 66:1403-1408.
Ghosh S, Hayden MS (2008). New regulators of NF-B in inflammation. Nat Rev Immunol 8:837-848.
Hayden MS, Ghosh S (2008). Shared principles in NF-B signaling. Cell 132:344-362.
Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988-1004.
Hess J, Angel P, Schorpp-Kistner M (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965-5973.
Hsieh HL, Sun CC, Wang TS, Yang CM (2008). PKC-/c-Src-mediated EGF receptor transactivation regulates thrombin-induced COX-2 expression and PGE(2) production in rat vascular smooth muscle cells. Biochim Biophys Acta 1783:1563-1575.
Huang S, Zhang A, Ding G, Chen R (2009). Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am J Physiol Renal Physiol 296:F1323-F1333.
Iademarco MF, McQuillan JJ, Rosen GD, Dean DC (1992). Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 267:16323-16329.
Ijaz A, Tejada T, Catanuto P, Xia X, Elliot SJ, Lenz O, Jauregui A, Saenz MO, Molano RD, Pileggi A, Ricordi C, Fornoni A (2009). Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes. Kidney Int 75:381-388.
Ishizawa K, Yoshizumi M, Tsuchiya K, Houchi H, Minakuchi K, Izawa Y, Kanematsu Y, Kagami S, Hirose M, Tamaki T (2004). Dual effects of endothelin-1 (1-31): induction of mesangial cell migration and facilitation of monocyte recruitment through monocyte chemoattractant protein-1 production by mesangial cells. Hypertens Res 27:433-440.
Jaken S (1996). Protein kinase C isozymes and substrates. Curr Opin Cell Biol 8:168-173.
Jiang BH, Zheng JZ, Aoki M, Vogt PK (2000). Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A 97:1749-1753.
Karin M, Gallagher E (2009). TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 228:225-240.
Karin M, Greten FR (2005). NF-B: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749-759.
Karin M, Liu Z, Zandi E (1997). AP-1 function and regulation. Curr Opin Cell Biol 9:240-246.
Kreisberg JI, Venkatachalam M, Troyer D (1985). Contractile properties of cultured glomerular mesangial cells. Am J Physiol 249:F457-F463.
Lan HY (2008). Role of macrophage migration inhibition factor in kidney disease. Nephron Exp Nephrol 109:e79-e83.
Lee CW, Lin CC, Lin WN, Liang KC, Luo SF, Wu CB, Wang SW, Yang CM (2007). TNF- induces MMP-9 expression via activation of Src/EGFR, PDGFR/PI3K/Akt cascade and promotion of NF-B/p300 binding in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292:L799-L812.
Lee CW, Lin CC, Luo SF, Lee HC, Lee IT, Aird WC, Hwang TL, Yang CM (2008). Tumor necrosis factor- enhances neutrophil adhesiveness: induction of vascular cell adhesion molecule-1 via activation of Akt and CaM kinase II and modifications of histone acetyltransferase and histone deacetylase 4 in human tracheal smooth muscle cells. Mol Pharmacol 73:1454-1464.
Lee YJ, Han HJ (2008). Albumin-stimulated DNA synthesis is mediated by Ca2+/PKC as well as EGF receptor-dependent p44/42 MAPK and NF-B signal pathways in renal proximal tubule cells. Am J Physiol Renal Physiol 294:F534-F541.
Li J, Campanale NV, Liang RJ, Deane JA, Bertram JF, Ricardo SD (2006). Inhibition of p38 mitogen-activated protein kinase and transforming growth factor-1/Smad signaling pathways modulates the development of fibrosis in adriamycin-induced nephropathy. Am J Pathol 169:1527-1540.
Li S, Wang L, Dorf ME (2009). PKC phosphorylation of TRAF2 mediates IKK/ recruitment and K63-linked polyubiquitination. Mol Cell 33:30-42.
Little MA, Bhangal G, Smyth CL, Nakada MT, Cook HT, Nourshargh S, Pusey CD (2006). Therapeutic effect of anti-TNF- antibodies in an experimental model of anti-neutrophil cytoplasm antibody-associated systemic vasculitis. J Am Soc Nephrol 17:160-169.
Liu Y, Shepherd EG, Nelin LD (2007). MAPK phosphatases--regulating the immune response. Nat Rev Immunol 7:202-212.
Ma FY, Tesch GH, Flavell RA, Davis RJ, Nikolic-Paterson DJ (2007). MKK3-p38 signaling promotes apoptosis and the early inflammatory response in the obstructed mouse kidney. Am J Physiol Renal Physiol 293:F1556-F1563.
Masuya M, Drake CJ, Fleming PA, Reilly CM, Zeng H, Hill WD, Martin-Studdard A, Hess DC, Ogawa M (2003). Hematopoietic origin of glomerular mesangial cells. Blood 101:2215-2218.
Meager A (1999). Cytokine regulation of cellular adhesion molecule expression in inflammation. Cytokine Growth Factor Rev 10:27-39.
Mocellin S, Rossi CR, Pilati P, Nitti D (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 16:35-53.
Mochly-Rosen D, Gordon AS (1998). Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J 12:35-42.
Morel J, Berenbaum F (2004). Signal transduction pathways: new targets for treating rheumatoid arthritis. Joint Bone Spine 71:503-510.
Myou S, Leff AR, Myo S, Boetticher E, Tong J, Meliton AY, Liu J, Munoz NM, Zhu X (2003). Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. J Exp Med 198:1573-1582.
Navarro JF, Mora C, Maca M, Garca J (2003). Inflammatory parameters are independently associated with urinary albumin in type 2 diabetes mellitus. Am J Kidney Dis 42:53-61.
Obrig TG, Culp WJ, McKeehan WL, Hardesty B (1971). The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem 246:174-181.
Pai R, Ha H, Kirschenbaum MA, Kamanna VS (1996). Role of tumor necrosis factor- on mesangial cell MCP-1 expression and monocyte migration: mechanisms mediated by signal transduction. J Am Soc Nephrol 7:914-923.
Park CW, Kim JH, Lee JH, Kim YS, Ahn HJ, Shin YS, Kim SY, Choi EJ, Chang YS, Bang BK (2000). High glucose-induced intercellular adhesion molecule-1 (ICAM-1) expression through an osmotic effect in rat mesangial cells is PKC-NF-B-dependent. Diabetologia 43:1544-1553.
Petri B, Phillipson M, Kubes P (2008). The physiology of leukocyte recruitment: an in vivo perspective. J Immunol 180:6439-6446.
Petruzzelli L, Takami M, Humes HD (1999). Structure and function of cell adhesion molecules. Am J Med 106:467-476.
Pfeffer K (2003). Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev 14:185-191.
Quaggin SE, Kreidberg JA (2008). Development of the renal glomerulus: good neighbors and good fences. Development 135:609-620.
Rodriguez-Barbero A, L'Azou B, Cambar J, Lopez-Novoa JM (2000). Potential use of isolated glomeruli and cultured mesangial cells as in vitro models to assess nephrotoxicity. Cell Biol Toxicol 16:145-153.
scamps-Latscha B, Herbelin A, Nguyen AT, Roux-Lombard P, Zingraff J, Moynot A, Verger C, Dahmane D, de GD, Jungers P, . (1995). Balance between IL-1 TNF-, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes. J Immunol 154:882-892.
Schena FP (1999). Cytokine network and resident renal cells in glomerular diseases. Nephrol Dial Transplant 14 Suppl 1:22-26.
Schlondorff D (1996). Roles of the mesangium in glomerular function. Kidney Int 49:1583-1585.
Schlondorff D (1987). The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J 1:272-281.
Schlondorff D, Banas B (2009). The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 20:1179-1187.
Schlondorff D, Nelson PJ, Luckow B, Banas B (1997). Chemokines and renal disease. Kidney Int 51:610-621.
Schlondorff DO (2008). Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int 74:860-866.
Segerer S, Nelson PJ, Schlondorff D (2000). Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11:152-176.
Sen R, Baltimore D (1986). Inducibility of  immunoglobulin enhancer-binding protein NF-B by a posttranslational mechanism. Cell 47:921-928.
Shepard HM, Brdlik CM, Schreiber H (2008). Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. J Clin Invest 118:3574-3581.
Sheryanna A, Bhangal G, McDaid J, Smith J, Manning A, Foxwell BM, Feldmann M, Cook HT, Pusey CD, Tam FW (2007). Inhibition of p38 mitogen-activated protein kinase is effective in the treatment of experimental crescentic glomerulonephritis and suppresses monocyte chemoattractant protein-1 but not IL-1 or IL-6. J Am Soc Nephrol 18:1167-1179.
Smith PC, Guerrero J, Tobar N, Caceres M, Gonzalez MJ, Martinez J (2009). Tumor necrosis factor--stimulated membrane type 1-matrix metalloproteinase production is modulated by epidermal growth factor receptor signaling in human gingival fibroblasts. J Periodontal Res 44:73-80.
Stambe C, Nikolic-Paterson DJ, Hill PA, Dowling J, Atkins RC (2004). p38 Mitogen-activated protein kinase activation and cell localization in human glomerulonephritis: correlation with renal injury. J Am Soc Nephrol 15:326-336.
Szlosarek PW, Balkwill FR (2003). Tumour necrosis factor : a potential target for the therapy of solid tumours. Lancet Oncol 4:565-573.
Tak PP, Firestein GS (2001). NF-B: a key role in inflammatory diseases. J Clin Invest 107:7-11.
Takeda S, Rogers SA, Hammerman MR (2006). Differential origin for endothelial and mesangial cells after transplantation of pig fetal renal primordia into rats. Transpl Immunol 15:211-215.
Tian W, Zhang Z, Cohen DM (2000). MAPK signaling and the kidney. Am J Physiol Renal Physiol 279:F593-F604.
Tipping PG, Leong TW, Holdsworth SR (1991). Tumor necrosis factor production by glomerular macrophages in anti-glomerular basement membrane glomerulonephritis in rabbits. Lab Invest 65:272-279.
Ulbrich H, Eriksson EE, Lindbom L (2003). Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci 24:640-647.
Vancurova I, Miskolci V, Davidson D (2001). NF-B activation in tumor necrosis factor -stimulated neutrophils is mediated by protein kinase Cdelta. Correlation to nuclear IB. J Biol Chem 276:19746-19752.
Wang HH, Hsieh HL, Wu CY, Yang CM (2009). Oxidized Low-Density Lipoprotein-Induced Matrix Metalloproteinase-9 Expression via PKC-/p42/p44 MAPK/Elk-1 Cascade in Brain Astrocytes. Neurotox Res.
Wu CY, Hsieh HL, Sun CC, Tseng CP, Yang CM (2008). IL-1 induces proMMP-9 expression via c-Src-dependent PDGFR/PI3K/Akt/p300 cascade in rat brain astrocytes. J Neurochem 105:1499-1512.
Wu X, Guo R, Chen P, Wang Q, Cunningham PN (2009). TNF induces caspase-dependent inflammation in renal endothelial cells through a Rho and myosin light chain kinase dependent mechanism. Am J Physiol Renal Physiol.
Wuthrich RP (1992). Intercellular adhesion molecules and vascular cell adhesion molecule-1 and the kidney. J Am Soc Nephrol 3:1201-1211.
Yamasaki T, Takahashi A, Pan J, Yamaguchi N, Yokoyama KK (2009). Phosphorylation of Activation Transcription Factor-2 at Serine 121 by Protein Kinase C Controls c-Jun-mediated Activation of Transcription. J Biol Chem 284:8567-8581.
Yang R, Trevillyan JM (2008). c-Jun N-terminal kinase pathways in diabetes. Int J Biochem Cell Biol 40:2702-2706.
Yarden Y (2001). The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 37 Suppl 4:S3-S8.
Yatabe J, Sanada H, Yatabe MS, Hashimoto S, Yoneda M, Felder RA, Jose PA, Watanabe T (2009). Angiotensin II type 1 receptor blocker attenuates the activation of ERK and NADPH oxidase by mechanical strain in mesangial cells in the absence of angiotensin II. Am J Physiol Renal Physiol 296:F1052-F1060.
Young PR (1998). Pharmacological modulation of cytokine action and production through signaling pathways. Cytokine Growth Factor Rev 9:239-257.
Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ (2002). Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev 22:146-167.
Zhou Z, Connell MC, MacEwan DJ (2007). TNFR1-induced NF-B, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signal 19:1238-1248.
Zhu L, Yang X, Ji Y, Chen W, Guan W, Zhou SF, Yu X (2009). Up-regulated renal expression of TNF- signalling adapter proteins in lupus glomerulonephritis. Lupus 18:116-127.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 探討內皮素刺激人類氣管平滑肌細胞調控血管黏附分子表現之機轉
2. 探討腫瘤壞死因子在人類關節滑液膜纖維母細胞上誘發環氧化酵素-2表現之機轉
3. DNA甲基轉移酵素3A其基因轉錄調控異常之機制探討
4. 幽門桿菌刺激胃上皮細胞株表現腫瘤壞死因子的機制探討
5. Ticlopidine抑制腫瘤壞死因子-α刺激人類臍帶內皮細胞所分泌的單核球趨化激素-1與介白質素-8之探討
6. 腫瘤壞死因子在高泌乳素血症相關之生殖功能低下雄鼠中所扮演之角色
7. 高濃度葡萄糖和/或腫瘤壞死因子-α對人類肝癌細胞株氧化壓力的影響
8. 調節型T細胞在僵直性脊椎炎病患中所扮演的角色及其在接受腫瘤壞死因子-α拮抗劑治療後的反應
9. 探討Bradykinin誘發人類類風濕性關節炎內滑液膜纖維母細胞產生環氧化酵素-2之表現機轉
10. 反覆發作性關節炎與腫瘤壞死因子α,腫瘤壞死因子接受器和間白素-1β基因多型性之研究
11. 探討降膽固醇藥物對於腫瘤壞死因子處理人類主動脈內皮細胞表現血栓調節蛋白之影響及其相關機轉
12. 探討抗氧化酵素對於人類主動脈內皮細胞受腫瘤壞死因子刺激表現細胞間黏附因子之影響與其機轉
13. 腫瘤壞死因子與C-型凝集素受器在登革出血熱致病性研究
14. 探討第一型血基質氧化酶、磷脂酶A2和第二型環氧化酶在人類氣管平滑肌上所扮演之角色及其調控機轉
15. 經由轉化生長因子訊息標杷治療腎臟疾病
 
系統版面圖檔 系統版面圖檔