跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張晏賓
研究生(外文):Yen Pin Chang
論文名稱:矽微透鏡之製作與研究
論文名稱(外文):Fabrication and study of silicon microlens
指導教授:張本秀王明杰王明杰引用關係
指導教授(外文):P. H. ChangM. J. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:88
中文關鍵詞:熱回流光阻微透鏡
外文關鍵詞:reflowPRmicrolens
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微光學透鏡應用在光電產業上越來越廣泛,微光學透鏡發展出許多製造方法。本論文將以黃光製程技術搭配熱回流(reflow)與感應耦合電漿離子蝕刻(ICP-RIE, Inductively Coupled Plasma Reactive Ion Etching)系統蝕刻的方式,製作Si基板上製作出微透鏡陣列。

利用不同轉速,以及多次曝光的技術,可以製作出各種不同厚度的厚膜光阻。熱回流的結果與光阻的厚度、熱回流時間及溫度、圖形的直徑大小等有關。在適當的光阻厚度與直徑及熱回流時間與溫度下,即可製作出光阻的微透鏡陣列。再以ICP乾式蝕刻,可進一步的將原來微透鏡陣列轉印到底下的矽基板上,可製作出各項尺寸的矽質光學微透鏡。本論文探討主要探討光阻厚度、直徑大小、厚度、熱回流(Reflow)時間與溫度及ICP蝕刻等對微透鏡製作的影響,做為未來製作矽微透鏡最佳製程的基礎。
Micro-optical lens are more and more extensively used in the optoelectronics industry. Numerous manufacturing methods for micro-optical lens had been developed. In this research, we are developing the fabricating process of the micro lens array on the Si substrate by using photo-lithography, photo-resist (PR) reflow, and dry etching (ICP-RIE (Inductively Coupled Plasma Reactive Ion Etching) techniques.

By controlling the coating spin speed and using multi-exposure techniques, a thick layer of photo-resist on Si wafer with different thickness can be coated. The shape of PR after reflow is dependent on the thickness of PR, the pattern diameter, reflow temperature and baking time. With optimized parameters of photo-lithography and reflow, we obtained the PR micro lens array. Furthermore, the PR micro-lens was transferred to the Si substrate by drying etching to form the Si micro-lens array. Here, we reported the influence of various parameters on the Si micro-lens fabrication, including PR thickness, reflow condition, and etching condition. Based on our results, we can optimize the fabricating process in the future.
目 錄
指導教授推薦書………………………………………………………. i
口試委員會審定書…………………………………………………….ii
授權書………………………………………………………………. iii
誌謝…………………………………………………………………….iv
中文摘要……………………………………………………………….vi
英文摘要…………………………………………………………….vii
目錄………………………………………………………………….ix
圖目錄……………………………………………………………….xii
表目錄………………………………………………………………….xv
第一章 緒論………………………………………………………… 1
1-1研究背景………………………………………………………1
1-2文獻回顧………………………………………………………2
1-2-1折射式透鏡……………………………………………2
1-2-2折射式為透鏡的製造技術……………………………3
1-3實驗動機……………………………………………………16
第二章 實驗步驟與分析方法………………………………………17
2-1實驗相關製程儀器簡介……………………………………17
2-1-1光學微影製程………………………………………17
2-1-1a塗底(priming)………………………………………18
2-1-1b光阻劑塗佈…………………………………………18
2-1-1c預烤(軟烤,Soft bake)……………………………19
2-1-1d曝光(Exposure)……………………………………20
2-1-1e顯影(Develop)……………………………………… 20
2-1-1f硬烤(Hard bake)……………………………………21
2-1-2光阻reflow……………………………………………21
2-1-3ICP-RIE(Inductively Coupled Plasma Reactive Ion Etching)……………………………………21
2-1-4掃描式電子顯微鏡(SEM)……………………………22
2-2高度與形狀測量………………………………………………24
2-2-1α-stepper(表面輪廓儀)……………………………24
2-2-2顯微鏡直接觀察法……………………………………24
2-3實驗步驟………………………………………………………25
2-4理論計算與量測………………………………………………27
2-4-1光阻reflow後的形狀………………………………27
2-4-2轉印後矽透鏡的形狀…………………………………28
第三章 結果與討論…………………………………………………30
3-1 PR coating and reflow………………………………………30
3-1-1 PR coating result………………………………… 30
3-1-2 PR reflow…………………………………………… 34
3-1-3最佳reflow條件………………………………………43
3-2 Si微透鏡製作…………………………………………………44
3-2-1矽的蝕刻………………………………………………44
3-3 矽微透鏡………………………………………………………49
3-4 製程問題與討論………………………………………………54
3-4-1透鏡表面坑洞…………………………………………54
3-4-2透鏡表面的附著物……………………………………55
3-4-3避免絲狀物產生的製程………………………………58
3-5 最佳製程………………………………………………………62
第四章 結論與未來工作……………………………………………66
參考文獻………………………………………………………………68






圖目錄
圖1-1熱熔法示意圖……………………………………………………4
圖1-2真空吸取法示意圖………………………………………………5
圖1-3微影印刷PMMA成長法示意圖……………………………………6
圖1-4微液滴法示意圖…………………………………………………7
圖1-5澆鑄翻模法示意圖………………………………………………8
圖1-6參雜擴散法示意圖………………………………………………9
圖1-7非接觸式壓模法示意圖…………………………………………10
圖1-8液晶式透鏡示意圖………………………………………………11
圖1-9焦距變化與電壓關係圖…………………………………………12
圖1-10灰階光罩法示意圖……………………………………………13
圖1-11準分子雷射加工法示意圖……………………………………14
圖2-1SEM工作原理示意圖……………………………………………23
圖2-2實驗之流程圖……………………………………………………25
圖2-3光阻reflow示意圖……………………………………………27
圖2-4光阻透鏡與模厚關係圖…………………………………………29
圖3-1PR膜厚與塗佈轉速關係圖………………………………………31
圖3-2PR reflow溫度對形狀圖………………………………………35
圖3-3PR reflow溫度對中心高度圖…………………………………35
圖3-4PR reflow時間對形狀圖………………………………………36
圖3-5PR reflow孔徑對形狀圖………………………………………38
圖3-6PR reflow孔徑對球殼模擬圖…………………………………38
圖3-7PR 二次 reflow形狀圖…………………………………………39
圖3-8PR reflow孔徑對膜厚圖………………………………………40
圖3-9PR reflow孔徑對膜厚統計圖…………………………………41
圖3-10光阻透鏡SEM圖………………………………………………42
圖3-11光阻透鏡剖面圖………………………………………………43
圖3-12電漿功率對蝕刻比圖…………………………………………46
圖3-13偏壓功率對蝕刻比圖…………………………………………46
圖3-14高偏壓功率對蝕刻比圖………………………………………48
圖3-15矽微透鏡轉印光阻圖…………………………………………49
圖3-16矽微透鏡蝕刻前後比較圖……………………………………50
圖3-17矽微透鏡3D立體圖……………………………………………51
圖3-18矽微透鏡縱向剖面圖…………………………………………52
圖3-19矽微透鏡SEM照片圖…………………………………………53
圖3-20細微透鏡OM照片圖……………………………………………54
圖3-21絲狀物SEM圖…………………………………………………55
圖3-22不同蝕刻時間OM圖……………………………………………57
圖3-23以SF6/Ar=2/1混合氣體蝕刻OM圖…………………………58
圖3-24以SF6與Ar氣體交互蝕刻OM圖……………………………59
圖3-25以SF6/O2=5/1混合氣體蝕刻OM圖…………………………60
圖3-26以純Ar為蝕刻氣體的蝕刻結果圖……………………………61
圖3-27以SF6/Ar=1/5混合氣體蝕刻OM圖…………………………63
圖3-28以SF6/Ar=1/5混合氣體蝕刻SEM圖…………………………63
圖3-29 以SF6/Ar=1/5混合氣體蝕刻量測圖…………………………65












表目錄
表3-1重複塗佈法 ……………………………………………………33
表3-2絲狀物EDS成分分析表 ………………………………………56
表3-3最佳製程參數表 ………………………………………………62
參考文獻
[1]Borrelli N. F., Morse D. L., Bellman R. H., and Morgan W. L.,“Photolytic technique for producing microlenses in photosensitive glass”, Applied Optics, 24, pp. 2520-2525, 1985.
[2]Zoran D.Popovic, Robert A. Sprague, and G.A. Neville Connell.”Technique for Monolithic Fabrication of Microlens Arrays,”Appl.Opt,Volume.27,No.7,pp.1281-1297,1988
[3].D.-S. Ko, “A decompression method for the fabrication of
polymer microlens arrays,” Infrared Physics & Technology, 45,
pp. 177–180, 2004.
[4].H Ottevaere, B Volckaerts, J Lamprecht, J Schwider, A
Hermanne, I Veretennicoff and H Thienpont,
“Two-dimensional plastic microlens arrays by deep lithography
with protons: fabrication and characterization,” J. Opt. A: Pure Appl. Opt., 4, pp. S22–S28, 2002.
[5]D.L.MacFarlane,V.Narayan,J.A.Tatum,W.R.Cox,T.Chen,and D.J.Hayes,”Microjet Fabrication of Microlens Arrays,”IEEE Photonic Technology Letter,Volume.6,No.9,pp.1112-1114,1994
[6]Jackie Chen, Weisong Wang, Ji Fang and Kody Varahramyan,
“Variable-focusing microlens with microfluidic chip”, J.Micromech. Microeng., Vol. 14, pp. 675–680, 2004.
[7].Choon-Sup Lee, Chul-Hi Han, “A novel refractive silicon
microlens array using bulk micromachining technology”,
Sensors and Actuators A, Vol.88, pp.87-90, 2001.
[8]. M. Oikawa, K. Iga. and T. Sanada, “Distributed-index planar microlens prepared from ion-exchange technique”, Jpn. J. Appl. Phys. Vol. 20, pp.L296-L298, 1981.
[9].Li-Wei Pan, Xinjiang Shen, and Liwei Lin, “Microplastic Lens Array Fabricated by a Hot Intrusion Process”, Journal of microelectromechanical systems, Vol.13, No.6,pp.1063-1071 December 2004.
[10].L.G. Commander, S.E. Day, D.R. Selviah, “Variable focal
length microlenses,” Optics Communications Vol. 177, pp.
157–170, 2000.
[11].Hongwen Ren, Yun-Hsing Fan, Sebastian Gauza and Shin-Tson
50 Wu, “Tunable microlens arrays using polymer network liquid
crystal,” Optics Communications, 230, pp. 267–271, 2004.
[12]Walter Däschner,Pin Long,and Robert Stein,”General Aspheric Refractive Micro-Optics Fabrication by Optical Lithography Using a High Energy Beam Sensitive Glass Gray-Level Mask,”J.Vac.Sci.Technol.B.Volume 14,No.6,pp.3730-3733,
1996.
[13]陳俊明,李永春,折射式微透鏡之準分子雷射LIGA製程開發與光學檢測,國立成功大學機械工程研究所碩士論文,民國93年.
[14].S. A. Takatsuki, T.Y. Nara, S.O. Kyoto, MICRO ASPHERICAL LENS AND FABRICATING METHOD THEREFOR AND OPTICAL DEVICE, US Patent 5148322,1992.
[15].N. Watanabe, H. Hamada, F. Funada, Y. Koriyama, OPTICAL
DEVICE HAVING A MICROLENS AND A PROCESS FOR
MAKING MICROLENSES, US Patent 5225935, 1994.
[16].K. Yuichi, PROCESS FOR PRODUCING MICRO LENS,
EP0690028 A1 19960103, 1996.
[17].K. Umeki, S. Sato, M. Sato, GRADATION MASK METHOD
OF PRODUCING THE SAME AND METHOD OF FORMING SPECIAL SURFACE PROFILE ON METERIAL USING GRADATION MASK, US Patent 5830605, 1998.
[18].Sihai Chen, Xinjian Yi and Hong Ma, “A novel method of
fabrication of microlens arrays,” Infrared Physics &
Technology, 44, pp. 133–135, 2003.
[19].Su-dong Moon, Shinill Kang, Jong-Uk Bu, “Fabrication of
polymeric microlens of hemispherical shape using
micromolding,” Opt. Eng. 41(9), pp. 2267–2270, 2002.
[20].Su-dongMoon, Namsuk Lee and Shinill Kang, “Fabrication of a microlens array using micro-compression molding with an
electroformed mold insert,” J. Micromech. Microeng. 13, pp.
98–103, 2003.
[21].C T Pan, “Design and fabrication of sub-micrometer eight-level bi-focal diffraction optical elements,” J. Micromech. Microeng.14, pp. 471–479, 2004.
[22].D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T.
Chen, and D. J. Hayes, “Microjet Fabrication of Microlens
Arrays,” IEEE Photonics Technology Letters, Vol. 6, No. 9, pp.
1112-1114, 1994.
[23].P Ruther, B Gerlach, J G¨ottert, M Ilie, J Mohr, A M¨uller and C Oßmann, “Fabrication and characterization of microlenses realized by a modified LIGA process,”Pure Appl. Opt. 6, pp.643–653, 1997, Printed in the UK.
[24]Feidhlim T. O’Neill, John T. Sheridan, Photoresist reflow method of microlens production.
[25]Hong HOCHENG1, Cheng-Tan PAN2; and Chi-Cheng CHENG1 Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 4044–4047
[26]Parametric Study of Spherical Micro-lens Array
R.F.Shyu1, a, C. T. Pan2, b, S. C. Lin2, c(2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top