( 您好!臺灣時間:2024/02/26 06:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Chun Fu Wang
論文名稱(外文):3D Model Reconstruction and Calibration System for Cleft Lip and Palate
指導教授(外文):S. Y. WanJ. D. Wei
外文關鍵詞:Cleft lip and palate3D model reconstruction3D model calibrationSpatial translation-calibration and modelingLe Fort I osteotomySoft to hard ratio
  • 被引用被引用:2
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  唇腭裂(cleft lip and palate)是最普遍的先天性顱顏異常,在亞洲地區每500到600名新生兒就會有一名患者產生;勒福一式(Le Fort I)截骨手術是唇腭裂治療程序其中一項矯正術式,本論文以勒福一式的軟硬組織比率數據對唇腭裂患者的臉部缺陷做手術模擬。
  Human face needs facial surgery are not only a quest for perfection, but also in major part for establishment of self-esteem by corrective operations, e.g., orthognathic surgery to improve facial esthetic. Most of current clinical practices lack three-dimensional(3D) perspectives of the patient in that the craniofacial physicians employ the cephalometry to assess features, e.g., craniofacial surface and bones. Cephalometry is used to depict the craniofacial morphology of a side, frontal or lateral. But the inherent limitation of cephalometry is two-dimensionality(2D). Besides, a 2D feature on a cephalometric view lacks some precise information.
  Cleft lip and palate is the most common congenital craniofacial anomalies. It happens in about every 500 to 600 new born babies in Asia. Le Fort I is a adjective procedure to rectify such defects. It is important in clinical practices to accurately predict the changes of soft tissue for both the physician and the patient. In this work, we further the studies in the relativity of soft-and-hard tissues, with emphasis in maxilla and mandible areas of the face. We incorporate the feature-based soft-tissue reconstruction into the developed 3D modeling system.
  In this paper, we propose a spatial translation- calibration and modeling (STCM) method, which the physicians can adjust the feature points of the face; i.e., planning of the craniofacial surgery, and the developed system can automatically determine estimated result of the Le Fort I osteotomy. The user of the developed system, i.e., the physicians and the patients, are then allowed to observe the approximate profiles of the craniofacial rectification well before surgery.
第一章 序論 4
1.1 研究背景 4
1.2 研究動機 4
1.3 研究目的 4
1.4 論文架構 4
第二章 文獻探討 4
2.1 影像前置處理 4
2.1.1 影像濾波器 (Image Filter) 4
2.1.2 形態學處理 (Morphological Processing) 4
2.2 影像切割 4
2.2.1 植基於閥值的切割法 (Threshold-Based) 4
2.2.2 植基於邊界的切割法 (Edge-Based) 4
2.2.3 植基於群域的切割法 (Region-Based) 4
2.3 三維模型成像 4
2.3.1 表面重構法 (Surface Rendering) 4
2.3.2 體積重構法 (Volume Rendering) 4
2.3.3 正面與側面兩張人臉影像重建三維模型 4
2.4 顱顏影像量測與校正 4
2.4.1 測顱術 (Cephalometry) 校正 4
2.4.2 分散與對稱法 (Distraction and Symmetry) 4
2.4.3 切面調整法 4
2.5 臨床上常用之顱顏影像分析軟體 4
2.5.1 Amira 4
2.5.2 i-CAT 4
2.5.3 Simplant 4
第三章 研究方法 4
3.1 系統流程與總論 4
3.2 影像切割與三維模型重建 4
3.2.1 閥值裝箱切割法 (Binning Thresholding) 4
3.2.2 具容忍性的閥值切割法 (Thresholding with Tolerance ) 4
3.2.3 三維模型重建 4
3.3 三維模型校正 4
3.4 三維軟組織模型術後預估 4
第四章 系統實作與結果 4
4.1 系統平台架構 4
4.2 影像取得與系統軟硬體需求 4
4.3 唇腭裂病患案例分析 4
4.3.1 三維模型重建方法比較分析 4
4.3.2 唇腭裂患者校正與術後軟組織預測探討 4
第五章 結論與未來發展 4
第六章 參考書目及文章 4
附錄A (軟硬組織比率數據資料) 4
附錄B (生醫影像處理平台程式架構說明) 4
1. John G. Clement and Murray K. Marks, “Computer-Graphic Facial Reconstruction,” Elsevier Academic Press, Burlington, 2005.
2. Z. H. Cho, J. P. Jones, and M. Singh, Foundations of Medical Imaging, John Wiley & Sons, 1993.
3. R. A. Robb, and C. Barillot, “Interactive display and analysis of 3-D medical images,” IEEE Transactions on Medical Imaging, vol. 8, no. 3, pp. 217-226, sept.1989.
4. Noordhoff Craniofacial Foundation,“唇腭裂--病症介紹,” http://www.nncf.org/face/treat_01.htm
5. M. Ewing and R. B. Ross, “Soft Tissue Response to Orthognathic Surgery in Persons,” The Cleft palate-craniofacial journal, 1991.
6. A. Waheidi and Harradine, “Soft Tissue Profile Changes in Patients with Cleft Lip and Palate Following Maxillary Osteotomies,” Cleft Palate-Craniofacial Journal, vol. 35 No. 6, November 1998.
7. R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” Reading, MA: Prentice-Hall, 2002.
8. M. J. Carlotto, “Histogram analysis using scale-space approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol9, no. 1, pp. 121-129, 1987.
9. N. Kanopoulos, N. Vasanthavada, R. L. Baker, “Design of an Image Edge Detection Filter using the Sobel Operator,” IEEE Journal of Solid-State Circuits, vol. 23, no. 2, pp. 358-367, April, 1988.
10. M. S. Su, C. Y. Chen and K. Y. Cheng, “The Reconstruction of 3D Head Model from Two Orthogonal-View 2D Face Images.” National Computer Symposium 2001, Taiwan, D320-D329, 2001.
11. O. Burgert et al., “A System for Facial Reconstruction using Distraction and Symmetry Consideration,” Institute of Real-Time Computer Systems & Robotics, Germany.
12. W. Schroeder, K. Martin and B. Lorensen, “The Visualization Toolkit: An Object-Oriented Approach To 3-D Graphics,” Prentice-Hall, Englewood Cliffs, NJ, 1996.
13. W. Schroeder, “The VTK User’s Guide,” Kitware, Inc. May, 2001.
14. C. H. Hou, “Modeling and Reconstruction of 3D Rat”, Master thesis, Computer Science and Information Engineering Dept., Univ. of Chung-Gung, Tao-Yuan, Taiwan, 2005.
15. C. Y. Liao, “Facial Modeling and Animation based on Muscle and Skull”, Master thesis, Computer Science and Information Engineering Dept., Univ. of Tsing-Hua, Hisn-Chu, Taiwan, 2002.
16. Y. C. Yu and John y. Chiang, “Human Facial Animation Based on Real Image Sequence,” Master thesis, Computer Science and Information Engineering Dept., Univ. of Sun Yat-sen, Kaohsiung, Taiwan, May, 2002.
17. S. Avidan and A. Shamir, “Seam Carving for Content-Aware Image Resizing,” ACM Transactions on Graphics, vol. 26, no. 3, Siggraph, 2007.
18. Y. T. Chen and C. S. Chen, “Fast Human Detection Using a Novel Boosted Cascading Structure With Meta Stages,” IEEE Transactions on image processing, vol. 17, no. 8, August, 2008.
19. Q. Zhang and I. Couloigner, “Accurate Centerline Detection and Line Width Estimation of Thick Lines Using the Radon Transform,” IEEE Transactions on image processing, vol. 16, no. 2, February 2007.
第一頁 上一頁 下一頁 最後一頁 top