(3.238.173.209) 您好!臺灣時間:2021/05/15 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳耿良
研究生(外文):Geng Liang Wu
論文名稱:流感病毒及疫苗交互影響模擬
論文名稱(外文):Influences of Vaccine Virus Strain on Transmission Dynamics of Seasonal Influenzas
指導教授:黃崇源
指導教授(外文):C. Y. Huang
學位類別:碩士
校院名稱:長庚大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:102
中文關鍵詞:流感病毒隨機網路正規網路小世界網路無尺度網路代理人
外文關鍵詞:Influenzarandom networkregular networksmall world networkscale-free networkagent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
季節性流感不論是在南半球還是在北半球,都是一位讓人害怕的常客,因為流感病毒具有高度的變異性,導致每年都需要變更當年度接種的流感疫苗,但由於疫苗製作費時且價格不菲,又常常聽到疾病管制局或是國外世界衛生組織發表目前所接種的疫苗與流行的病毒株不相符,或是明明接種疫苗與流行病毒相符合,但卻仍然發生為數眾多的民眾受到感染。
本研究提出一個以代理人系統為基礎,結合隨機網路、正規網路、小世界網路、無尺度網路、具有群聚性的無尺度網路等網路模型,並使用免疫概念來建構一個流行病傳播模型。在模型中考慮到了高群聚性、低分隔度、節點分支度呈現冪次律分布等真實社會網路所具有的拓樸特性,並透過代理人模擬現實社會中的人類個體,以代理人間的互動代替現實生活中的相互接觸、傳染,從而實現多種病毒株在人類社會中演化、散播的情況,以便了解流感病毒株如何在人類體內與疫苗產生交互影響,從而顯現出疫苗的真實功效,避免疫苗接種流於形式,對於實際防疫工作無應有之功效。
No matter in the Northern Hemisphere or in the Southern Hemisphere,Seasonal influenza is an emerging of infections disease that people fears so much.Because of Influenza virus having higher variability that making it necessary to change the vaccination of inoculating every year .But it is time-consuming and sumptuous to manufacture vaccination. And usually to hear about CDC or WHO publishing the vaccination which we inoculate were not tally with Influenza virus and prevalent among now .Even it is correspond with vaccination and Influenza virus. There are numbers of people be infected with Seasonal influenza.

Our research presents a network model base on agent based model combine with random , regular, small world , scale-free and power law cluster network. We consider the high clustering, low degree of separation and degree present to power law which have topologic characteristics in real social network. Using an agent simulate an individual in real society.We use the interaction of multi-agent to replace the contact of real life , and the situation of multi-virus evolve and spread in human society . Therefore, we can how the real effection of the vaccine is , and avoid invalid of the vaccine.
指導教授推薦書……………………………………………………………………I
口試委員會審定書…………………………………………………………………Ⅱ
授權書………………………………………………………………………………III
致謝.............................................................................................................................. IV
中文摘要....................................................................................................................... V
ABSTRACT ................................................................................................................. VI
目錄............................................................................................................................. VII
圖表目錄...................................................................................................................... IX
第一章:序論................................................................................................................ 1
1.1 研究動機 .............................................................................................................. 1
1.2 問題描述 .............................................................................................................. 4
1.3 研究目標 .............................................................................................................. 9
1.4 論文架構 ............................................................................................................ 11
第二章:文獻探討、相關理論與模型...................................................................... 12
2.1.1 NEWMAN 的病原體模型 ................................................................................. 12
2.1.1-1 小結 ........................................................................................................ 13
2.1.2 RAHMANDAD 和STERMAN 的代理人和微分方程模型 ................................. 14
2.1.2-1 小結 ......................................................................................................... 15
2.2 代理人模型 ....................................................................................................... 16
2.2.1 代理人為基礎的模擬(Agent-Based Simulation) ................................ 16
2.2.2 細胞自動機與種族隔離模型 .................................................................... 18
2.2.3 免疫模型+Sugarscape 模型 .................................................................... 22
2.2.4 在ABS 下的社會網路類型 ...................................................................... 26
2.2.5 傳染病與消息在多代理人中擴散的模擬 .................................................... 34
2.2.5-1 小結 ......................................................................................................... 35
2.2.6 使用網路架構分析高感染風險個體 ............................................................ 35
2.2.6-1 小結 ......................................................................................................... 36
2.3 免疫系統 ........................................................................................................... 37
2.3.1 免疫機制及其運作原理 ............................................................................ 37
2.3.2 疫苗與免疫系統 ........................................................................................ 38
2.4 流感疫苗 ........................................................................................................... 41
2.4.1 流感病毒簡介 ............................................................................................ 41
2.4.2 臺灣施打疫苗策略 ..................................................................................... 42
第三章:系統架構與模型設計.................................................................................. 44
3.1 初始化設定 ....................................................................................................... 46
3.1.1 社會網路 .................................................................................................... 46
3.1.2 流感病毒編碼 ............................................................................................ 48
3.1.3 個體相關屬性 ............................................................................................ 51
3.2 模擬設定 ........................................................................................................... 54
3.2.1 免疫防護率 ................................................................................................ 55
3.2.2 代理人間的互動 ........................................................................................ 56
3.2.3 疫苗策略 .................................................................................................... 58
第四章:實驗與分析討論.......................................................................................... 61
4.1 驗證各種網路架構 ............................................................................................ 62
4.1.1 隨機網路 ......................................................................................................... 62
4.1.2 正規網路 ......................................................................................................... 64
4.1.3 小世界網路 ..................................................................................................... 66
4.1.4 無尺度網路 ..................................................................................................... 68
4.1.5 具有群聚性的無尺度網路 ............................................................................. 70
4.2 疫苗施打策略 .................................................................................................... 73
4.2.1 沒有採用任何策略 ......................................................................................... 77
4.2.2 隨機施打 ......................................................................................................... 78
4.2.3 特定對象施打 ................................................................................................. 79
第五章:結論與未來工作.......................................................................................... 86
參考文獻...................................................................................................................... 88
[1] Lamps, Hoffmann and Preiser et al, “Influenza Report 2006”, http://www.influenzareport.com/ir/lang.htm
[2] Nobusawa, E., and K. Sato. Comparison of the mutation rates of human influenza A and B viruses. Journal of Virology. 803675-3678 (2006)
[3] Shih SR., Chen GU, Yang CC. etc. Laboratory-based surveillance and molecular epidemiology of influenza virus in Taiwan. Clin Microb; 43: 1651-61 (2005)
[4] Joshua M. Epstein and Robert Axtell. Growing Artificial Societies: Social Science from the Bottom Up, The MIT Press. ( 1996)
[5] Nigel Gilbert and Klaus G. Troitzsch. Simulation for the Social Scientist Second Edition, Open University Press. (2005)
[6] Watts, D. J. and Strogatz, S. H. Collective dynamics of 'small-world' networks, Nature, vol. 393, no. 6684, pp. 440-2 (1998).
[7] P. Erdös and P. R´enyi, Publ. Math. Inst. Hung. Acad.Sci. 5, 17 (1960).
[8] Barabási A L,Albert R. Emergence of scaling in random network. Science,286(5439):509-512 (1999)
[9] M. E. J. Newman, “The structure and function of complex networks”, SIAM Rev. vol. 45, no. 2, pp. 167–256 (2003)
[10] H. Rahmandad and J. Sterman. Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models. MIT Sloan Working. Paper No. 4512-04 (2004)
[11] X. Gong and R. Xiao. Research on Multi-Agent Simulation of Epidemic News Spread Characteristics. Journal of Artificial Societies and Social Simulation, 10(3) (2007)
[12] R.M. Christley, G.L. Pinchbeck, R.G. Bowers, D. Clancy, N.P. French, R. Bennett, and J. Turner. Infection in Social Networks: Using Network Analysis to Identify High-Risk Individuals. American Journal of Epidemiology, 162(10), 1024-1031 (2005)
[13] C.-Y. Huang, C.-T. Sun, J.-L. Hsieh, and H. Lin. Simulating sars: Small-world epidemiological modeling and public health policy assessments. Journal of Artificial Societies and Social Simulation, 7(4) (2004)
[14] Albert, R. and Barabási, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47–97 (2002)
[15] M. E. J. Newman. The structure and function of complex networks. SIAM Rev., vol. 45, no. 2, pp. 167–256, (2003).
[16] Milgram, S. The small world problem. Psychology Today, vol. 2, pp. 60-67. (1967)
[17] M.E.J. Newman. Threshold Effects for Two Pathogens Spreading on a Network. Physical Review Letters, 95(10), 108701. (2005)
[18] S. Wolfram, Theory and Applications of Cellular Automata, World Scientific. (1986)
[19] Schelling, T. C. The Strategy of Conflict. Harvard University Press, Cambridge, Mass. (1960)
[20] 疾病管制局 http://www.cdc.gov.tw/mp.asp?mp=1
[21] 台北市衛生局 http://www.health.gov.tw/
[22] 傳染病統計資料查詢系統 http://nidss.cdc.gov.tw/default.aspx
[23] 流感防治網 http://flu.cdc.gov.tw/mp.asp?mp=150
[24] World Health Organization http://www.who.int/en/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊