(3.238.99.243) 您好!臺灣時間:2021/05/15 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳青美
研究生(外文):Ching Mei Wu
論文名稱:二氧化鉿與氧化鉿鉭及塑膠感測膜的創新差動光位址感應器量測系統
論文名稱(外文):A novel differential LAPS with PVC ,HfTaO and HfO2 sensing membranes for pH sensors
指導教授:賴朝松
指導教授(外文):C. S. Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:48
中文關鍵詞:光定址電位感測器氧化鉿氧化鉿钽塑膠感測膜
外文關鍵詞:LAPSHfO2HfTaOPVC membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光定址電位感測器( LAPS ) 是一種以半導體為基礎化學感測器, 其基本架構為溶液 - 絕緣體 - 半導體. 因為LAPS有製程簡單及易於封裝的優點,近年來已被分類出來當成一單獨的(生物)化學感測元件來研究. 為了得到更穩定的量測結果,遂有以差動模式來達成雜訊補償的研究. 本篇論文是以一種新穎的差動模式光定址電位感測器來達成酸鹼度的感測.
此研究是將兩種對酸鹼的感測度不同的感測薄膜鍍在同一片光定址電位感測器上. 結合了雙感測薄膜的感測器與差動放大電路,可以量測到差動模式下的酸鹼感測度. 而差動模式下的訊號比原本單一薄膜的感測器訊號可以增強約十倍. 在感測膜的選擇上,表面有經過RTA處理的二氧化鉿因其高感測度而被選做基礎膜.參考膜選用了兩種薄膜:氧化鉿钽與塑膠薄膜(PVC). 二氧化鉿與氧化鉿钽的差動模式可得到9.7 mV/pH的感測度; 塑膠薄膜的感測度取決於塑化劑,因此針對塑化劑的含量作調變實驗,得到感測度最低的劑量為60% DNP/DNP+PVC ( 24 mV/pH) . 使用此塑膠薄膜與二氧化鉿差的動模式可得到30 mV/pH的感測度.
The light-addressable potentiometric sensor (LAPS) is a semiconductor - based chemical sensor with an electrolyte - insulator - semiconductor (EIS) structure. Due to the relatively simple manufacturing and simple encapsulation, the (bio-) chemical sensor development was started as an individual sensor platform. For higher stabilized signal due to the noise-compensation effect, the cancellation of mutual noise or base signal component, a new differential measurement method for a LAPS has been developed in this study.
The differential mode LAPS is fabricated by two different pH sensitivity membranes deposited on one chip. By the Combination of the dual films LAPS and differential OP – amplifier circuit, the differential mode sensitivity for pH value has been measured successfully. The differential signal can be enhanced about 1 order then single membrane signal. The HfO2 membrane with RTA treatment was chosen as foundation membrane due to its high pH sensitivity ( 59 mV/pH). There are two types sensing membranes were chosen as reference membrane : HfTaO membrane and PVC membrane. The differential mode pH sensitivity for HfO2 / HfTaO LAPS was 9.7 mV/pH. The various PVC membrane have been tested, and PVC composition of the lowest pH sensitivity is 60% DNP/DNP+PVC ( 24 mV/pH) . The differential mode pH sensitivity for HfO2/PVC LAPS can reach 30 mV/pH.
CHAPTER 1 Introduction……………………………………………………. 1
1.1 Introduction of LAPS ……………………………………...…………………… 1
1.2 Motivations………………….…………………………………………………. 2
1.3 Literary reviews of differential mode……………...………………………...… 3
CHAPTER 2 Measurement platform setup of differential mode LAPS……….…... 12
2.1 Introduction……………..…………….…………………….…………….….… 12
2.2 Experiments setup……………………………………….……………….....….. 14
2.3 Results and Discussion of Differential Mode test……………………………..… 16
2.4 Summary…………………………………………………..…………………..… 18
CHAPTER 3 pH sensor by using HfO2 and HfTaO differential mode………..….…. 21
3.1 Introduction……………..…………….…………………….…………….….… 21
3.2 Experiments ………………………………………….….……………….....….. 21
3.3 Results and Discussion ………………………………………………………..… 24
3.4 Summary…………………………………………………..………….………..… 25
CHAPTER 4 pH sensor by using HfO2 and PVC membrane differential mode…….. 31
4.1 Introduction……………..…………….…………………….……….…….….… 31
4.2 Experiments ………………………………………….….…………….….....….. 31
4.3 Results and Discussion …………………………………………………….…… 34
4.4 Summary…………………………………………………..………….………..… 36
CHAPTER 5 Conclusion and future work…………………………………..……….. 47
5.1 Conclusion……………..…………….…………………….……….……...….… 47
5.2 Future work ………...……………………………….….……….…….….....….. 47
Content of figures
CHAPTER 1 Introduction
Fig. 1-1 Schematic diagram of LAPS……………………….....…………………… 2
Fig. 1-2 The differential mode measurement method block diagram ……….……... 5
Fig. 1-3 The timing sequence of the LAPS signal for the differential measurement approach. ………………………………………………………………………....… 6
Fig. 1-4 The characteristics for the single laser on and both laser on together……... 7
Fig. 1-5 Difference signal for the various pH. ……………………………………... 8
Fig. 1-6 Bias-difference at various pH. …………………………………………….. 8
CHAPTER 2 Measurement platform setup of differential mode LAPS
Fig. 2-1 The photocurrent corresponded to the 16 LEDs………………….……..… 13
Fig. 2-2 Structure and measurement principle of the differential LAPS……......….. 13
Fig 2-3-1 LAPS sensor structure…………………………………………………..… 14
Fig 2-3-2 Photo of differential LAPS…………………..……………………….....… 14
Fig 2-4-1 Differential mode signal circuit……..……………………………….....… 15
Fig 2-4-2 The work function for differential mode………….………………….....… 15
Fig. 2-5 The waveform signal for 2 lines….……………………………………....… 16
Fig. 2-6 The waveform signal for differential mode……………………………....… 17
Fig. 2-7 The hypothesis of differential mode I-V curve…………………..……....… 18
CHAPTER 3 pH sensor by using HfO2 and HfTaO differential mode
Fig. 3-1 Process flow for HfO2 and HfTaO membranes differential mode LAPS structure……………………………………………………………….…..……....… 22
Fig.3-2 Photo of differential mode sensor.….………………..............................….. 23
Fig.3-3 HfO2 and HfTaO differential mode LAPS structure…………….….……..… 23
Fig.3-4 XPS data for HfTaO membrane…………………..………….…..………..… 25
Fig. 3-5 (a) The I-V curves of HfO2/SiO2¬ LAPS with RTA 700 ℃ from pH2 to pH12 buffer solutions. (b) The fitting slop of sensitivity was extracted in linear region. …. 26
Fig. 3-6 (a) The I-V curves of HfTaO/SiO2¬ LAPS without RTA from pH2 to pH12 buffer solutions. (b) The fitting slop of sensitivity was extracted in linear region. …. 27
Fig. 3-7 (a) The I-V curves of HfO2 and HfTaO/SiO2¬ LAPS differential mode from pH2 to pH12 buffer solutions. (b) The fitting slop of sensitivity was extracted in linear region. ………………..………….…………………………….…………………...… 28
CHAPTER 4 pH sensor by using HfO2 and PVC membrane differential mode
Fig. 4-1. The sensing area defined by red glue on LAPS…………….………..….… 32
Fig.4-2.1 The process flow of the fabrication of PVC membrane…….….….......….. 33
Fig.4-2.2 The structure diagram of the fabrication of PVC membrane……….…..… 34
Fig.4-2.3 The structure diagram of the fabrication of differential mode PVC membrane
……………………………………………………………………………….……..… 34
Fig. 4-3 The I-V curves of PVC/HfO2/SiO2¬ LAPS with DNP 50% of DNP + PVC from pH2 to pH12 buffer solutions. …………………………………………...…….…..… 37
Fig. 4-4 (a) The I-V curves of PVC/HfO2/SiO2¬ LAPS with DNP 60% of DNP + PVC from pH2 to pH12 buffer solutions. (b) The fitting slop of sensitivity was extracted in linear region. ……………………………………………………………..…….…..… 38
Fig. 4-5 (a) The I-V curves of PVC/HfO2/SiO2¬ LAPS with DNP 70% of DNP + PVC from pH2 to pH12 buffer solutions. (b) The fitting slop of sensitivity was extracted in linear region. ……………………………….………………………………….…..… 39
Fig. 4-6 (a) The I-V curves of PVC/HfO2/SiO2¬ LAPS with DNP 80% of DNP + PVC from pH2 to pH12 buffer solutions. (b) The fitting slop of sensitivity was extracted in linear region. ………………………………………………………………..….…..… 40
Fig. 4-7 (a) The I-V curves of PVC+HfO2/SiO2¬ differential mode LAPS with DNP 60% of DNP + PVC from pH2 to pH12 buffer solutions. (b) The fitting slop of sensitivity was extracted in linear region. …………………………………………………..….…..… 41
Fig. 4-8 (a) The I-V curves of single contact test on differential LAPS with another contact grounding (b) The I-V curves of single contact test on differential LAPS with another contact floating……………………………………………………..….…..… 42
Fig. 4-9 (a) The I-V curves of 1 contact ground of PVC and HfO2 on differential mode LAPS from pH2 to pH12 buffer solutions. (b) The flat-band voltage from 2 contacts.... 43
Fig. 4-10 (a) The I-V curves of 1 contact floating of PVC and HfO2 on differential mode LAPS from pH2 to pH12 buffer solutions. (b) The flat-band voltage from 2 contacts. .. 44
CHAPTER 5 Conclusion and future work
Fig. 5-1 Future work for the LAPS structure of differential sensitivity improving….. 47
Content of table
Table 4-1 Performance of PVC membrane with various DNP contents…………..… 37
[1] D.G. Hafeman, J. W. Parce and H. M. McConnell, “Light-addressable potentiometric sensor for biochemical systems”, Science, 240 (1988) 1182-1185.
[2] Giuseppe Massobrio, Sergio Martinoia and Massimo Grattarola, “Light-addressable chemical sensors: modeling and computer simulation”, Sens. Actuator B, 7 (1992) 484-487.
[3] M. Shimizu, Y. Kanai, H. Uchida and T. Katsube, “Integrated biosensor employing a surface photovoltage technique”, Sens. Actuator B, 20 (1994) 187-192.
[4] T. Yoshinobu, M.J. Schöning, R. Otto, K. Furuichi, Y. Mourzina, Y. Ermolenko and H. Iwasaki, “Portable light-addressable potentiometric sensor (LAPS) for multisensor applications”, Sens. Actuator B, 95 (2003) 352-356.
[5] H.S. Moon, S.K. Ryu, D.Y. Yum and H.C. Kim, “Speed improvement of a pathogenic micro-organism population detection with LAPS system by a magnetic bead separation and a pH detection”, IEEE EMBS, (2004) 1979-1982.
[6] Torsten Wagner, Tatsuo Yoshinobu, Chanwen Rao, Ralph Otto, Michael J. Schöning. “ “All-in one” solid-state device based on a light-addressable potentiometric sensor platform”, Sens. Actuator B, 117 (2006) 472-479.
[7] M. Sartore, M. Adami, C. Nicolini, L. Bousse, S. Mostarshed and D. Hafeman. “ Minority carrier diffusion length effects on light-addressable potentiometric sensor (LAPS) devices”. Sens. Actuator A, 32 (1992) 431-436.
[8] Y. Sasaki, Y. Kanai, H. Uchida, T. Katsube. “ Highly sensitive taste sensor with a new differential LAPS method”. Sens. Actuator B, 24-25 (1995) 819-822 .
[9] A.W. Flounders, A.K. Singh, J.V. Volponi, S.C. Carichner, K. Wally, A.S. Simonian, J.R. Wild, J.S. Schoeniger. “Development of sensors for direct detection of organophosphates. Part Ⅱ: sol-gel modified field effect transistor with immobilized organophosphate hydrolase”. Biosensors & Bioelectronics, 14 (1999) 715-722.
[10] Abu Bakar Md. Ismail, Tatsuo Yoshinobu, Hiroshi Iwasaki, Hirokazu Sugihara, Tetsuo Yukimasa, Isao Hirata, Hiroo Iwata. “ Investigation of light-addressable potentiometric sensor as a possible cell-semiconductor hybrid”. Biosensors & Bioelectronics, 18 (2003) 1509-1514.
[11] Abu Bakar Md. Ismail, Hirokazu Sugihara, Tatsuo Yoshinobu, Hiroshi Iwasaki. “A novel low-noise measurement principle for LAPS and its application to faster measurement of pH”. Sens. Actuator B, 74 (2001) 112-116 .
[12] Wong, H.S., White, M.H., 1989, “A CMOS integrated ISFET operational amplifier chemical sensor employing differential sensing”. IEEE trans. Elextron. Dev. 36(3) (1989) , 479-487
[13] Tahara, S.,Yoshii, M.,Oka, S., 1982. “Electrochemical reference electrode for the ion-selective field effect transistor”. Chem lett. 3(1982), 307-310
[14] Rocher, V., Chovelon, J.M., Jaffrezic-Renault, N., Cros, Y., Birot, D., 1994. “An oxynitride ISFET modified for working in a differential mode for pH detection”. J. Electrochem. Soc. 114 (2)(1994), 535-539
[15] Michael J. Schöning and Arshak Poghossian. “Recent advances in biologically sensitive field-effect transistors(BioFETs)”. Amalyst, 127 (2002), 1137-1151
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top