跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林韋丞
研究生(外文):Wei Cheng Lin
論文名稱:二氧化鉿感測薄膜之感測度及光效應於酸鹼感測之研究
論文名稱(外文):Study of Sensitivity and Light Effect for pH Sensor with Hafnium Dioxide Sensing Membrane
指導教授:賴朝松
指導教授(外文):C. S. Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:127
中文關鍵詞:離子感測場效電晶體電解質絕緣層矽結構二氧化鉿光效應快速熱退火
外文關鍵詞:ISFETEISHafnium DioxideLight effectRTA post treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來重要之生醫感測元件-離子感測場效電晶體已被廣泛的探討研究,和傳統離子電極相比此元件擁有更多優點,如元件尺寸小、反應時間快,堅固耐撞、微量溶液即可感測和可與超大型積體電路中之互補式金氧半場效電晶體製程相容。而為了得到更快的速度與更好之特性,元件尺寸將會越縮越小,但是以二氧化矽為閘極氧化層之電晶體會有漏電流的問題,因此採用高介電常數材料取代傳統二氧化矽來解決此一問題,故採用高介電常樹材料將會是未來尺寸為型化的重要趨勢。在眾多高介電常數材料中又以氧化鉿取代二氧化矽之機率最大,亦因此為了使離子感測場效電晶體能繼續和金氧半場效電晶體製程相容,使用氧化鉿當做感測薄膜之研究將是非常具有意義與需要的。
於本論文中,本人使用氧化鉿材料當做感測薄膜,並利用EIS結構來探討其感測特性,而使用此結構之好處在於製程容易與減少源極與汲極對感測特性的影響。實驗主要可分為三部分:首先本人探討單雙層EIS結構對感測薄膜感測特性及光效應之影響;第二部分本人提出改變感測薄膜厚度來比較感測薄膜感測特性及光效應之影響;第三部分則是探討利用快速熱退火方式來改善感測薄膜特性及光效應抵抗能力。
ISFET, one of the most important bio-devices, has been investigated extensively in recent year. Comparing with traditional ion electrode, this device has several advantages such as , small size, short response time, firm and resistant to impacts, fewer test solution and compatible with CMOS VLSI technology. As the size of silicon dioxide-based transistors continues to be sized down in order to obtain faster devices and good performance, the high-k dielectric material was used to replace silicon dioxide to overcome leakage current issue of MOSFET. Above mention, hafnium dioxide as promising high-k material to replace silicon dioxide was used as sensing membrane of ISFET in order to compatible with CMOS fabrication process in the future.
In this work, we used hafnium dioxide as sensing insulator of EIS (electrolyte-insulator-Si substrate) structure which is convenient to fabricate without considering source/drain effect to investigate the sensing properties. The experiments were divided into three parts: first, the sensing character and light effect on single and stacked EIS structure was studied; second, we adjusted the thickness of sensing membrane to investigate the influence of sensing character and light effect; third, we adjusted the RTA post treatment temperature to improve the sensing character and light effect.

Key words: ISFET, EIS, Hafnium Dioxide, light effect, RTA post treatment.
Contents
摘要 i
Abstract ii
Contents iii
Figure Captions and Table iV
Chapter 1 Introduction 1
1.1 Origination and motivation…...………………….…...1
1.2 The purpose of this work………………………….…..4
1.3 Research process and Organization…………………..7
1.3.1 Research process…………………………….….7
1.3.2 Charter planning…………………………..8
Chapter 2 Basic Theory 16
2.1 Basic theory………………………….………….....16
2.1.1 MOSFET principle…………………….........16
2.1.2 ISFET principle……………………………….19
2.1.3 EIS principle………………………………….23
2.2 Definition of experiment conditions…....……...……25
2.2.1 Selection of sensing membrane………….…25
2.2.2 Selection of experiment light source………25
2.2.3 Selection of measurement conditions….......26
2.3 The light effect……………………………………….30
2.3.1 Production of light effect…………..…………30
2.3.2 Improvement method of light effect.…………32
2.3.3 Measurement of pH sensitivity and light effect….35
Chapter 3 Experiment design and practice 50
3.1 The setup of measured condition….......…………..…50
3.1.1 Introduction…………………………………50
3.1.2 Experiment…………………………………50
3.1.3 Selection of C-R mode………………………..52
3.2 Comparison of single and stacked structure…………56
3.2.1 Introduction……………………….…………..56
3.2.2 Experiment……………………………………56
3.2.3 Results and discussion………………………..57
3.3 Changing the thickness of sensing membrane…….…59
3.3.1 Introduction…………………………………...59
3.3.2 Experiment…………………………………....60
3.3.3 Results and discussions……………………….60
3.4 RTA temperature adjustment………...………..….….62
3.4.1 Introduction……………………………...……62
3.4.2 Experiment……………………………………62
3.3.3 Results and discussions………………………63
3.5 Summary…………………………………………….65
Chapter 4 Comprehensive discussion of different membrane thickness and RTA temperature adjustment 78
4.1 Experiment of different membrane thickness and RTA temperature adjustment………………………………..78
4.1.1 Introduction………….………………………..79
4.1.2 Experiments procedure……………………….79
4.1.3 Results and discussion………………………..80

4.2 Light induced drift…...………….……………...……84
4.2.1 Introduction…………………….……………..84
4.2.2 Measurement methods and steps……………84
4.2.3 Results and Analysis………………………….85
4.3 Conclusion………..……………………….................87
Chapter 5 Summary 95
5.1 Conclusion…….………………………….….……....95
5.2 Future work…………………………….…...….........98










Figure Captions and Tables

Fig. 1-1 Research process diagram.
Table 1-1 The comparison of relevant properties for high-k candidates [20].
Fig. 2-1 The schematic cross section of the CMOS.
Fig. 2-2 The schematic cross section structure of the MOSFET.
Fig. 2-3 The pinch-off sketch map.
Fig. 2-4 The schematic cross section of the ISFET.
Fig. 2-5 The schematic cross section of the site dissociation model.
Fig. 2-6 The schematic cross section of the EIS.
Fig. 2-7 The pH sensitivity with different CMAX.
Fig. 2-8(a) Light induced shift effect C-V curve.
Fig. 2-8(b) Light induced memory effect C-V curve.
Fig. 2-9 The standard C-V curve.
Fig. 2-10 The equivalent circuit of (a) CS-RS mode and (b) CP-RP mode in C-V measurement.
Fig. 2-11 Relation of frequency and C-V.

Fig. 3-1(a) The C-V curve with different frequency in CP-RP mode.
Fig. 3-1(b) The C-V curve with different frequency in Cs-Rs mode.
Fig. 3-2 The C-V curve during the illumination.
Fig. 3-3 The different ratio with the CMAX diagram.
Fig. 3-4 The process flow of single and stacked structure.
Fig. 3-5 The process flow of different thickness of sensing membrane
Fig. 3-6 The pH sensitivity of different thickness sensing membrane
Fig. 3-7 The voltage shift of light induced shift effect with different sensing thickness.
Fig. 3-8 The voltage shift of light induced memory effect with different sensing thickness.
Fig. 3-9 The process flow of different RTA post treatment temperature.
Fig. 3-10 The pH sensitivity in 10 nm thickness with different RTA post treatment temperature.
Fig. 3-11 The voltage shift of light induced shift effect in 10 nm thickness with different RTA post treatment temperature.
Fig. 3-12 The voltage shift of light induced memory effect in 10 nm thickness with different RTA post treatment temperature.
Table 3-I The CMAX in the different frequency with CP-RP and CS-RS mode.
Table 3-II The pH sensitivity with different thickness and ratio of CMAX.
Table 3-III The error of CMAX with different ratio.
Table 3-IV The pH sensitivity of different structure and w/o illumination.
Table 3-V The voltage shift of light induced memory effect with different thickness and ratio of CMAX.

Fig. 4-1 The fabrication process flow for HfO2 EIS.
Fig. 4-2 The pH sensitivity of all thickness and RTA post treatment temperature.
Fig. 4-3 The voltage shift of light induced shift effect with all thickness and RTA post treatment temperature.
Fig. 4-4 The voltage shift of light induced memory effect with all thickness and RTA post treatment temperature.
Fig. 4-5 The light induced drift w/o annealing sample.
[1] P. Bergveld, Development of an ion-sensitivity solid-state device for neurophysiological measurements, IEEE Transactions on Bio-Medical Engineering, (1970) 70-71.
[2] Viatcheslav Volotovsky, Namsoo Kim, 1998, “Determination of Glucose Ascorbic and Citric Acid by Two-ISFET Multienzyme Sensor”, Sensors and Actuator B, Vol.49, PP.253-257.
[3] L. Bousse, S. Mostarshed, B. Van der Schoot and N. F. de Rooij, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sensors and Actuators B, 17 (1994) 157-164
[4] L. Bousse, H. H van der Vlekkert and N. F. de Rooij, Hysteresis in Al2O3-gate ISFETs, Sensors and Actuators B, 2 (1990) 103-110.
[5] W. Olthuis, J. Luo, B. H. Van Der Schoot, J. G. Bomer, P. Bergveld, Dynamic behaviour of ISFET-base sensor-actuator systems, Sensors and Actuators B,1 (1990) 416-420.
[6] Aine Garde, John Alderman and Willian Lane, Improving the drift and hysteresis of the Si3N4 pH response using RTP techniques, Sensors and Materials, 9 (1997) 015-023.
[7] Luc Bousse, Dean Hafeman and Nancy Tran, Time-dependence of the chemical response of silicon nitride surface, Sensors and Actuators, B1, (1990) 361-367.
[8] Tadayuki Matsuo and Masayoshi Esashi, Methods of ISFET fabrication, Sensors and Actuators, 1 (1981) 77-96.
[9] B. D. Liu, Y. K. Su, and S.C. Chen, Ion-sensitivity field-effect transistor with silicon nitride gate for pH Sensing, INT, J. Electronics, .67, No.1 (1989) 59-63.
[10] Peter Hein and Peter Egger, Drift behaviour of ISFETs with Si3N4-SiO2 gate insulator, Sensors and Actuators B, 13-14 (1993) 655-656.
[11] Yu Dun, Wei Ya-dong and Wang Gui-Hua, Time-dependent response characteristics of pH-sensitive ISFET, Sensors and Actuators B, 3 (1991) 279-285.
[12] Zhong Yule, Zhao Shouan, Lin Tao, 1994, “Drift Characteristics of pH-ISFET Output ”, Chinese Journal of Semiconductors, Vo;. 12, No. 15, PP.838-843.
[13] H. Van Den Vlekkert, L. Bousse and N. De Rooij, The Temperature dependence of the durface potential at the Al2O3/electrolyte interface, J. Colloid interface Sci., vol. 122 (1988) 336-345.
[14] Wang GuiHua, Yu Dun and Wang Yao-Lin, ISFET temperature characteristics, Sensors and Actuators , 11 (1987) 221-237.
[15] Peter R. Barabash, Richard S. C. Cobbold, and Wojciech B. Wlodarski, Analysis of the threshold and its temperature dependence in electrolyte-insulator-semiconductor field-effect transistor (EISFET’s), IEEE Transactions on Electron Device, vol. ED-34, No. 6 (1987) 1271-1282.
[16] A. K. Chu, H. C. Lin, and W. H. Cheng, Temperature dependence of refractive index of Ta2O5 dielectric films, Journal of Electronic Materials, vol.26, No.8 (1997) 889-892.
[17] Stephen Cheng and pete Manos, Effects of operating temperature on electrical parameters in an analog process, IEEE Circuits and Devices Magazine, (1989) 31-38.
[18] Yo Kato, Kenichi Yoshikawa and Maki kitora, temperature-dependent dynamic response enable the qualification and quantification of gates by a single sensor, Sensors and Actuators B, 80 (1997) 33-37.
[19] H. F. Luan, B. Z. Wu, L. G. Kang, B. Y. Kim, R. Vrtis, D. Roberts and D. L. Kwong, “Ultra thin high quality TaO gate dielectric prepared by in-situ rapid thermal processing”, IEDM Tech. Dig., (1998) 609-612.
[20] B. He, T. Ma, S. A. Campbell and W. L. Gladfelter, “A 1.1 nm oxide equivalent gate insulator formed using TiO2 on nitrided silicon”, IEDM Tech. Dig., (1998) 1038-1040.
[21] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao and W. J. Chen, “High Quality La2O3 and Al2O3 Gate Dielectrics with EOT 5~10Å”, VLSI Symposium Technical Digest, (2000) 16-17.
[22] J. J. Chambers and G. N. Parsons, “Yttrium silicate formation on silicon: Effect of silicon preoxidation and nitridation on interface reaction kinetics”, Appl. Phys. Lett., 77 (2000) 2385-2387.
[23] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact With silicon”, J. Mater., Res., 11 (1996) 2757-2776.
[24] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee, “Ultrathin Hafnium oxide with low leakage and excel-. lent reliability for alternative gate dielectric application”, IEDM Tech. Dig, (1999) 133-134.
[25] K. Eisenbeiser, J. M. Finder, Z. Yu., J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw and C. D. Overgaard, “Field effect transistors with SrTiO3 gate dielectric on Si”, Appl. Phys. Lett., 76 (2000) 1324-1326.
[26] G. B. Alers, D. J. Werder, Y. Chabel, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson and R. S. Urdahl, “Intermixing at the tantalum oxide/silicon interface in gate dielectric structures”, Appl. Phys. Lett., 73 (1998) 1517-1519.
[27] K. Eisenbeiser, J. M. Finder, Z. Yu., J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw and C. D. Overgaard, “Field effect transistors with SrTiO3 gate dielectric on Si”, Appl. Phys. Lett., 76 (2000) 1324-1326.
[28] M. Gurvitch, L. Manchanda, and J.M. Gibson, “Study of thermally oxidized yttrium films on silicon” Appl. Phys. Lett., 51 (1987) 919-921.
[29] N. V. Nguyen, Albert V. Davydov, Deane Chandler-Horowite and Martin M. Frank, “Sub-bandgap defect states in polycrystalline hafnium oxide and theirsupperession by admixture of silicon”, Applied Physics Letters 87, 192903 (2005)

[1] P. Bergveld, Development of an ion-sensitivity solid-state device for neurophysiological measurements, IEEE Transactions on Bio-Medical Engineering, (1970) 70-71.
[2] L. Bousse, S. Mostarshed, B. Van der Schoot and N. F. de Rooij, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sensors and Actuators B, 17 (1994) 157-164
[3] D. L. Harame, L. J. Bousse, J. D. Shott and J. D. Meindl, Ion-sensing devices with silicon nitride and borosilicate glass insulators, IEEE Trans. Electron Devices, vol. ED-34 (1987) 1700-1707.
[4] M. N. Niu, X. F. Ding and Q. Y. Tong, Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs, sensors and Actuators, B 37 (1996) 13-17.
[5] L. Bousse, H. H van der Vlekkert and N. F. de Rooij, Hysteresis in Al2O3-gate ISFETs, Sensors and Actuators B, 2 (1990) 103-110.
[6] H. Van Den Vlekkert, L. Bousse and N. De Rooij, The Temperature dependence of the durface potential at the Al2O3/electrolyte interface, J. Colloid interface Sci., vol. 122 (1988) 336-345.
[7] A. S. Poghossian, The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs, Sensors and Actuators B, 7 (1992) 367-370.
[8] D. K. Kwon, B. W. Cho, C. S. Kim and B. K. Sohn, Effect of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET, Sensors and Actuators B 34 (1996) 441-445.
[9] T. Mikolajick, R. Kuhnhold and H. Ryssel, The pH-sensing properties of tantalum pentoxide membranes fabricated by metal organic low pressure chemical vapor deposition, Sensors and Actuators B 44 (1997) 262-267.
[10] P. Gimmel, B. Gompf, D. Schmeisser, H. D. Wiemhofer, W. Gopel and M. Klein, Ta2O5-gates of pH-sensitive devices: comparative spectroscopic and electrical studies, Sensors and Actuators, 17 (1989) 195-202.
[11] P.V. Bobrov, Yu. A. Tarantov, S. Krause and W. Moritz, Chemical sensitivity of an ISFET with Ta2O5 membrane in strong acid and alkaline solutions, Sensors and Actuators B, 3 (1991) 75-81.
[12] P. Gimmel, K. D. Schierbaum, W. Gopel, H.H. Van Den Vlekkert and N.F. De Rooij, Reduced light sensibility in optimized Ta2O5-ISFET structures, Sensors and Actuators B, 4 (1991) 135-140.
[13] P. Gimmel, K.D. Schierbaum, W. Gopel, H.H. Van Den Vlekkert and N.F. De Rooij, Microstructured solid-state ion-sensitive membranes by thermal oxideation of Ta, Sensors and Actuators, B1 (1990) 345-349.
[14] D. E. Yates, S. Levine and T. W. Healy, Site-binding model of the electrical double layer at the oxide/wafer interface, J. Chem. Soc. Faraday Trans. I, 70 (1974) 1807-1818.
[15] S. D. Collins, Practical limits for solid-state reference electrodes, Sensors and Actuators B, 10 (1993) 169-178.
[16] Yuri G. Vlasov, Andrey V. Bratov, Analytical application of pH-ISFETs, Sensors and Actuators B, 10 (1993) 169-178.
[17] C. Diekmann, C. Dumschat, K. Cammann and M. Knoll, Disposable reference electrode, Sensors and Actuators B, 24-25 (1995) 276-278.
[18] C. Cane, A. Gotz, A. Merlos, I. Gracia, A. Errachid, P.Losantos and E. Lora-Tamayo, Multilayer ISFET membranes for Microsystems applications, Sensors and Actuators B, 35-36 (1996) 136-140.
[19] Pavel Neuzil, ISFET integrated sensor technology, Sensors and Actuators B, 24-25 (1995) 232-235.
[20] W. Olthuis, J. Luo, B. H. Van Der Schoot, J. G. Bomer, P. Bergveld, Dynamic behaviour of ISFET-base sensor-actuator systems, Sensors and Actuators B,1 (1990) 416-420.
[21] Aine Garde, John Alderman and Willian Lane, Improving the drift and hysteresis of the Si3N4 pH response using RTP techniques, Sensors and Materials, 9 (1997) 015-023.
[22] Luc Bousse, Dean Hafeman and Nancy Tran, Time-dependence of the chemical response of silicon nitride surface, Sensors and Actuators, B1, (1990) 361-367.
[23] Tadayuki Matsuo and Masayoshi Esashi, Methods of ISFET fabrication, Sensors and Actuators, 1 (1981) 77-96.
[24] B. D. Liu, Y. K. Su, and S.C. Chen, Ion-sensitivity field-effect transistor with silicon nitride gate for pH Sensing, INT, J. Electronics, .67, No.1 (1989) 59-63.
[25] Yu Dun, Wei Ya-dong and Wang Gui-Hua, Time-dependent response characteristics of pH-sensitive ISFET, Sensors and Actuators B, 3 (1991) 279-285.
[26] J. A. Voorthuyzen and P. Bergveld, Photoelectric effects in Ta2O5-SiO2-Si structures, Sensors and Actuators, B1 (1990) 350-353.
[27] Hirokazu Hara, Tatsuya Otha, Dynamic response of a Ta2O5- gate pH-sensitive field-effect transistor, Sensors and Actuators B, 32 (1996) 115-119.
[28] M. J. Schoning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordos, H. Luth, A Highly long-term stable silicon-based pH sensors fabricated by pulsed laser deposition technique, Sensots and Actuators B, 35 (1996) 228-233.
[29] Hiroshi Abe, Masayoshi Esashi, Tadayuki Matsuo, ISFETs using inorganic gate thin membranes, IEEE Transactions on Electron Devices, Vol. ED-26, No.12 December (1979) 1937-1944.
[30] B. H. Van Der Schoot, H. H. Van Der Vlekkert, N. F. De Rooij, A Flow injection analysis system with glass-bonded ISFETs for the simultaneous detection of calcium and potassium ions and pH, Sensors and Actuators B, 4 (1991) 239-241.
[31] Wang Zheng-Xiao, Applications of penicillinase FET in penicillin-fermentation engineering, Sensors and Actuators B, 13-14 (1993) 568-569
[32] LiChdshan Zhong and Gaoziang Li, Biosensor based in ISFET for penicillin determination, Sensors and Actuators B, 13-14 (1993) 570-571.
[33] P. R. Barabash, R. S. C. Cobbold, W. B. Wlodarski, “Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator-semiconductor field-effect transistors (EISFET’s)”, IEEE Trans. Electron Device, 34 (1987) 1271.
[34] W. M. Siu and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system: physical and theoretical aspects”, IEEE Trans. Electron Devices, ED-26, (1979) 1805-1815.
[35] N. F. de Rooij and P. Bergveld, “The Influence of the pH on the Electrolyte-SiO2-Si System Studied by Ion-Sensitive FET Measurements and Quasistatic CV Measurements Thin Solid Membranes”, 71 (1980) 327-331.
[36] N. V. Nguyen, Albert V. Davydov, Deane Chandler-Horowite and Martin M. Frank, “Sub-bandgap defect states in polycrystalline hafnium oxide and theirsupperession by admixture of silicon”, Applied Physics Letters 87, 192903 (2005)
[37] N. Abramova, Y. Borisov, A. Bratov, P. Gavrilenko and C. Dominguez, V. Spiridonov and E. Suglobova, “Application of an ion selective field effect transistor with a photocured polymer membrane in nephrology for determination of potassium ions in dialysis solution and in blood plasma”, Talanta, 52 (2000) 533.
[38] A. Bratov, N. Abramova, C. Dominguez, T. Baldi, “Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk”, Anal. Chim. Acta., 408 (2000) 57.
[39] A. Bratov. N.Abramova, J. Murioz, C. Dominguez, S. Alegret and J. Bartroli, “Optimization of photocurable polyurethane membrane composition for ammonium ion sensor”, J. Electrochem. Soc., 144 (1997) 617.

[1] J.A. Voorthuyzen, P. Bergveld, “Photoelectric effects in Ta2O5/SiO2/Si structure”, Sensors and Actuators: B. Chemical (1990), 1 (1-6), pp. 350-353.
[2] Yoshitaka Ito, “Stability of ISFET and its new measurement protocol”, Sensors and Actuators B 66 (2000) 53-55
[3] Hung-Kwei Liao, En-Shieh Yang, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun, and Shen-Kan Hsiung, “Temperature and Optical Characteristics of Tin Oxide Membrane Gate ISFET”, IEEE transactions on electron device, vol. 46, No. 12, December 1999.
[4] G. He, M. Liu, L.Q. Zhu, M. Chang Q. Fang, and L.D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100)”, Surf. Scie., 576 (2005) 67-75.
[5] N. V. Nguyen, Albert V. Davydov, and Deane Chandler-Horowitz, Martin M. Frank, “Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon”, applied physics letters 87, 192903 (2005)

[1] Yoshitaka Ito, “Stability of ISFET and its new measurement protocol”, Sensors and Actuators B 66 (2000) 53-55
[2] Hung-Kwei Liao, En-Shieh Yang, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun, and Shen-Kan Hsiung, “Temperature and Optical Characteristics of Tin Oxide Membrane Gate ISFET”, IEEE transactions on electron device, vol. 46, No. 12, December 1999.
[3] Paik-Kyun Shin, “The pH-sensing and light induced drift properties of titanium dioxide thin films deposited by MPCVD”, Applied Surface Science 214 (2003) 214-221.
[4] T. Mikolajick, R, Kuhnhold, H. Ryssel, “The pH-sensing properties of tantalum prntoxide films fabricated by metal organic low pressure chemical vapor deposition”, Sensors and Actuators B 44 (1997) 262-267.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊