|
References [1] Process integration, devices, and structures in International Technology Roadmap for Semiconductor (ITRS), http://publoc.itrs.net, 2008. [2] J. Roberson, J. Vac. Sci. Technol. B 18, 1785 (2000). [3] J. Roberson, Mater Research. Soc. 27, 217 (2002). [4] S. Wolf, Silicon processing for the VLSI era: Vol. 4 – Deep Submicron Process Technology, Lattice Press, Sunset Beach CA, 2002, p146, 170. [5] Fu-Chien Chiu, “Electrical characterization and current transportation in metal/Dy2O3/Si structure” J. Appl. Phys., vol. 102, pp. 044116_1-5, 2007. [6] Fu-Chien Chiu, “Electrical characterization and current transportation in metal/Dy2O3/Si structure” J. Appl. Phys., vol. 102, pp. 044116_1-5, 2007. [7] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater Res., vol. 11, no. 11, pp. 2757-2776, 1996. [8] D. G. Schlom and J. H. Haeni, “A Thermodynamic Approach to Selecting Alternative Gate Dielectrics,” Mater. Res. Soc., pp. 198-204, 2002. [9] Albert Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High Quality La2O3 and A12O3 Gate Dielectrics with Equivalent Oxide Thickness 5-10Å,” Symp. VLSI Tech. Dig., pp.16-17, 2000. [10] Yukie Nishikawa, Takeshi Yamaguchi, Masahiko Yoshiki, Hideki Satake, and Noburu Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si (111),” Appl. Phys. Lett., vol. 81, no. 23, pp.4386-4388, 2002. [11] Fu-Chien Chiu, Chun-Yen Lee, and Tung-Ming Pan,” Current conduction mechanisms in Pr2O3/oxynitride laminated gate dielectrics,” J. Appl. Phys., vol. 105, pp. 074103-1, 2009. [12] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, “Properties of high k gate dielectrics Gd2O3 and Y2O3 for Si,” J. Appl. Phys., vol. 89, no. 7, pp. 3920-3927, 2001. [13] M. P. Singh, C. S. Thakur, K. Shalini, N. Bhat, and S. A. Shivashankar, “Structural and electrical characterization of erbium oxide films grown on Si(100) by low-pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 83, no. 14, pp.2889-2891, 2003. [14] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices” J. Vac. Sci. Technol. B vol. 18, Issue 3, pp. 1785-1791, 2000. [15] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, “Advanced Gate Dielectric Materials for Sub-100 nm CMOS,” IEDM Tech. Dig., 2002, pp. 625-628. [16] Sheng-Chih Chang, Shao-You Deng, and Joseph Ya-Min Lee, “Electrical characteristics and reliability properties of metal-oxide- semiconductor field-effect transistors with Dy2O3 gate dielectric,” Appl. Phys. Lett., vol. 89, pp.053504_1-3, 2006. [17] Shun-ichiro OHMI, Hiroyuki YAMAMOTO, Junichi TAGUCHI, Kazuo TSUTSUI and Hiroshi IWAI, “Effects of Post Dielectric Deposition and Post Metallization Annealing Processes on Metal/Dy2O3/Si(100) Diode Characteristics,” J. J. Appl. Phys., Vol. 43, No. 4B, 2004, pp. 1873–1878. [18] Sanghun Jeon and Hyunsang Hwang, “Effect of hygroscopic nature on the electrical characteristics of lanthanide oxides Pr2O3, Sm2O3, Gd2O3, and Dy2O3.” J. Appl. Phys., vol. 93, no. 10, pp. 6393-6395, 2003. [19] Fu-Chien Chiu, “Electrical characterization and current transportation in metal/Dy2O3/Si structure” J. Appl. Phys., vol. 102, pp. 044116_1-5, 2007. [20] Sanghun Jeon, Kiju Im, Hyundoek Yang, Hyelan Lee, Hyunjun Sim, Sangmu Choi, Taesung Jang, and Hyunsang Hwang, “Excellent Electrical Characteristics of Lanthanide (Pr, Nd, Sm, Gd, and Dy) Oxide and Lanthanide-doped Oxide for MOS Gate Dielectric Applications,” IEDM Tech. Dig., 2001, pp. 471-474. [21] L. Kim, J. Kim, D. Jung, and Y. Roh, “Controllable capacitance–voltage hysteresis width in the aluminum–cerium-dioxide–silicon metal–insulator–semiconductor structure: Application to nonvolatile memory devices without ferroelectrics,” Appl. Phys. Lett., vol. 76, no. 14, pp.1881-1883, 2000. [22] W. A. Hill and C. C. Coleman, “A single-frequency approximation for interface-state density determination,” Solid State Electron. 23, 987 (1980). [23] M. Depas, T. Nigam, and M. M. Heyns, “Soft Breakdown of Ultra- Thin Gate Oxide Layers,” IEEE Trans. Electron Devices, vol. 43, no. 1, pp. 70-80, 1996. [24] T. Nigam, R. Degraeve, G. Groeseneken, M. M. Heyns, and H. E. Maes, “Constant Current charge-to-breakdown: Still a valid tool to study the reliability of MOS structures? ,” in Proc. IRPS, pp. 62-69, 1998. [25] Jordi Sune, “New physicals-based analytic approach to the thin-oxide breakdown statistics,” IEEE Electron Device Lett., vol. 22, no. 6, pp. 296-289, 2001. [26] R. Degraeve, G. Groesenken, R. Bellens, M. Depas, and H. E. Maes, “A consist model for the thickness dependence of intrinsic breakdown in ultra-thin oxides,” IEDM Tech. Dig., 1998, pp. 863-866. [27] C. H. Chen, I. Yin-ku Chang, F. C. Chiu, Joseph Ya-min Lee, Y. K. Chou, and T. B. Wu, “Relaibility properties of metal-oxide-semiconductor capacitors using HfO2 high-k dielectric,” Appl. Phys., vol. 91, pp. 123507, 2007. [28] E. S. Anolick, and G. Nelson, “Low field time dependent dielectric integrity,” in Proc. IRPS, vol. 7, pp. 8-12, 1979. [29] D. Crook, “Method of determining reliability screens for time dependent dielectric breakdown,” in Proc. IRPS, vol. 17, pp. 1-4, 1979. [30] J. W. Mcpherson and D. A. Baglee, “Acceleration parameters for thin gate oxide stressing,” in Proc. IRPS, vol. 23, pp. 1-4, 1985. [31] I. C. Chen, S. Holland, and C. Hu, “A quantitative model for time-dependent breakdown is SiO2,” in Proc. IRPS, vol. 23, pp. 24-27, 1985. [32] J. Lee, I. C. Chen, and C. Hu, “Statistical modeling of silicon dioxide reliability,” in Proc. IRPS, vol. 26, pp. 131-138, 1988. [33] T. Wiktorczyk*, “Preparation and optical properties of holmium oxide thin films,” Thin Solid Films 405 (2002) 238-242. [34] Jani Paivasaari, Matti Putkonen, Lauri Niinisto, “A comparative study on lanthanide oxide thin films grown by atomic layer deposition,” Thin Solid Films 472 (2005) 275-281.
|