|
[1] Z. Shengdong, Z. Chunziang, J. K. O. Sin, J. N. Li, and P. K. T. Mok, “Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass,” IEEE Trans. Electron Devices, vol. 47. no. 3, pp. 569-575, 2000. [2] I. W. Wu, “Low temperature poly-Si TFT technology for AMLCD’s,” Proc. 1995 Int. Workshop on Active-Matrix Liquid-Crystal Displays, Osaka, Japan, 1995. [3] Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,” Journal of the SID, vol. 9, pp. 169-172, 2001. [4] S. Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs,” SID Dig., pp.156-159, 1983. [5] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 38, pp. 1781-1786, 1991. [6] Mark Stewart, Robert S. Howell, Leo Pires, Miltiadis K. Hatalis, Webster Howard, and Olivier Prache, “Polysilicon VGA active matrix OLED displays-technology and performance,” in IEDM tech, Dig., pp. 871-874, 1998. [7] Mark Stewart, Robert S. Howell, Leo Pires, Miltiadis K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp.845-851, 2001. [8] Zhiguo Meng and Man Wong, “Active-matrix organic light-emitting diode displays realized using metal-induced unilaterally crystallized polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 49, pp. 991-996, 2002. [9] S. Batra, “Development of drain-offset (DO) TFT technology for high density SRAM’s,” Extended Abstracts, vol.94-2, in Electrochemical Soc. Fall Mtg., Miami Beach, FL, Oct. pp. 677-679, 1994. [10] M. Cao, et al., “A simple EEPROM cell using twin polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 15, pp. 304-308, 1994. [11] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Trans. Electron Devices, vol. 43, pp. 1930-1936, 1996. [12] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and system-on-chip integration,” Proceedings of the IEEE, vol.89, pp. 602-633, 2001. [13] H. Ohshima and S. Morozumi, “Future trend for TFT integrated circuits on glass substrates,” in IEDM Tech. Dig., 1989, pp. 157-160. [14] K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile application,” in Proc. Symp. VLSI Circuits, Dig. Tech. Papers., pp. 85-90, 2001. [15] T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, “Low temperature fabrication of high-mobility poly-Si TFTs for large-area LCDs,” IEEE Trans, Electron Devices, vol. 36, no. 9, pp. 1929-1933, Sep. 1989. [16] K. Sakariya, C. K. M. Ng, P. Servati, and A. Nathan, “Accelerated stress testing of α-Si:H pixel circuits for AMOLED displays,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2577-2583, Dec. 2005. [17] S. D. S. Malhi, H. Shichijo, S. K. Vanerjee, R. Sundaresan, M. Elahy, G. P. Pollack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, IEEE Trans. Electron Devices, vol. 32, pp. 258-264, 1985. [18] J. G. Fossum, A. Ortiz-Conde, H. Schichijo, and S. K. Banerjee, “Effects of grain boundaries on the channel conductance of SOI MOSFETs,” IEEE Trans. Electron Devices, vol. ED-30, no. 7, pp. 933-940, Jul. 1983. [19] T. I. Kamins, “Polycrystalline silicon for integrated circuit applications,” Kluwer, Norwell, MA, 1988. [20] C. H. Hong, C. Y. Park and H. J. Kim, “Structure and crystallization of low pressure chemical vapor deposited silicon films using Si2H2 gas,” J. Appl. Phys., vol. 71, pp. 5427-5432, 1992. [21] A. Nakamura, F. Emoto, E. Fujii, and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” IEDM Tech. pp. 847-851, 1990. [22] S. W. Lee, T. H. Ihn, and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin-film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 8, pp. 407-409, Aug. 1996. [23] G. K. Guist, and T. W. Sigmon, “High-performance laser-processed polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 77-79, Feb. 1999. [24] N. Kudo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin-film transistors fabricated by excimer laser annealing method,” IEEE Trans, Electron Devices, vol. 40, pp. 1876-1879, Oct. 1994. [25] S. W. Lee, T. H. Ihn, and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin-film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 8, pp. 407-409, Aug. 1996. [26] M. Cao, S. Talwar, K. J. Kramer, T. W. Sigmon, and K. C. Saraswat, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films,” IEEE Trans. Electron Devices, vol. 43, no. 4, pp. 561-567, 1996. [27] G. K. Giust and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering,” IEEE Trans. Electron Devices, vol. 43, no. 4, pp. 561-567, 1996. [28] J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett., vol. 70, no. 25, pp. 3434-3436, 1997. [29] A. Yin, and S. J. Fonash, “High-performance p-channel poly-Si TFT’s using electron cyclotron resonance hydrogen plasma passivation,” IEEE Electron Device Lett., vol. 15, no. 12, pp. 502-503,1994. [30] C. K. Yang, T. F. Lei, C. L. Lee, “The combined effects of low pressure NH3 annealing and H2 plasma hydrogenation on poly-silicon thin-film-transistors,” IEEE Electron Device Lett., vol. 15, pp. 389-390, 1994. [31] J. W. Lee, N. I. Lee, J. I. Kan, C. H. Han, “Characteristics of poly-silicon thin-film transistor with thin-gate dielectric grown by electron cyclotron resonance nitrous oxide plasma,” IEEE Electron Device Lett., vol. 18, pp. 172-174, 1997. [32] K. C. Moon, J. H. Lee, M. K. Han, “Improvement of polycrystalline silicon thin film transistor using oxygen plasma pretreatment before laser crystallization,” IEEE Trans. Electron Devices., vol. 49, pp. 1319-1322, 2002. [33] B. H. Min, C. M. Park and M. K. Han, “A novel offset gated poly-silicon thin film transistor without and additional offset mask,” IEEE Electron Device Lett., vol. 16, no. 5, pp. 161-163, 1995. [34] P. S. Shih, C. Y. Chang, T. C. Chang, T. Y. Huang, D. Z. Peng and F. Yeh, “A novel lightly doped drain poly-silicon thin-film transistor with oxide sidewall spacer formed by on-step selective liquid phase deposition,” IEEE Electron Device Lett., vol. 20, no. 8, pp. 421-423, 1999. [35] K. Y. Choi and M. K. Han, “A novel gate-overlapped LDD poly-silicon thin-film transistor,” IEEE Electron Device Lett., vol. 17, no. 12, pp. 566-568, 1996. [36] T. Unagami and O. Kogure, “Large on/off current ratio and low leakage current poly-Si TFTs with multichannel structure,” IEEE Trans. Electron Devices., vol. 35, no. 11, pp. 1986-1989, 1988. [37] T. Y. Huang, A. G. Lewis, I. W. Wu, A. Chiang, and R. H. Bruce, “New intra gate offset high voltage thin film transistor with misalignment immunity,” Electronics Lett., vol. 25, no. 8, pp. 544-545, 1989. [38] C. S. Lai, C. L. Lee, T. F. Lei and H. N. Chern, “A novel vertical bottom-gate polysilicon thin film transistor with self-aligned offset,” IEEE Electron Device Lett., vol. 17, no. 5, pp. 199-201, 1996. [39] G. E. Moore, “Lithography and the future of Moore’s Law,” in Proc. Eighth Optical/Microlithography Conf., SPIE, Feb. 1995, vol. 2440, pp. 2-17. [40] P. M. Zeitzoff and J. E. Chung, “Weighing in on logic scaling trends,” IEEE Circuits Devices Mag., vol. 18, pp. 18-27, Mar. 2002. [41] S. Thompson et al., “A 90-nm logic technology featuring 50-nm strained silicon channel transistors, 7 layers of Cu interconnects, low-κ ILD, and 1μm2 SRAM cell,” in IEDM Tech. Dig., 2002, pp. 61-64. [42] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo and A. Nighiyama, “Thermally stable ultra-thin nitrogen incorporated ZrO2 gate dielectric prepared by low temperature oxidation of ZrN,” in IEDM Tech. Dig., 2001, pp. 20.3.1-20.3.4. [43] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. GGGribelyuk, H. Okorn-Schmidt, C. D. Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. A. Ragnarsson and Rons, “Ultrathin high-κ gate stacks for advanced CMOS devices,” in IEDM Tech. Dig., 2001, pp. 20.1.1-20.1.4. [44] Z. Jin, H. S. Kwok, and M. Wong, “High-performance polycrystalline SiGe thin-film transistors using Al2O3 gate insulators,” IEEE Electron Device Lett., vol. 19, no. 12, pp. 502-504, Dec. 1998. [45] B. W. Busch, O. Pluchery, Y. J. Chabal, D. A. Muller, R. L. Opila, J. R. Kwo, and E. Garfunkel, “Materials characterization of alternative gate dielectrics,” MRS Bull., vol. 27, no. 3, pp. 206-211, Mar. 2002. [46] C. P. Lin, B. Y. Tsui, M. J. Yang, R. H. Huang, and C. H. Chien, “High-performance poly-silicon TFTs using HfO2 gate dielectric,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 360-363, May 2006. [47] H. S. P. Wong, “Beyond the conventional transistor,” IBM J. Res. Develop., vol. 46, no. 2/3, pp. 133-168, Mar.-May 2002. [48] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243-5275, May 2001. [49] Y. Morimoto, Y. Jinno, K. Hirai, H. Ogata, T. Yamada, and K. Yoneda, J. Electrochem. Soc., 144, 2495 (1997). [50] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Ciang, IEEE Electron Device Lett., 12, 181 (1991). [51] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Ciang, IEEE Electron Device Lett., 11, 167 (1990). [52] H. N. Chern, C. L. Lee, and T. F. Lei, IEEE Trans. Electron Devices, 41, 698 (1994). [53] C. K. Yang, T. F. Lei, and C. L. Lee, J. Electrochem. Soc., 143, 3302 (1996). [54] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, in Tech. Dig. Int. Electron Devices Meet., 2000, 653. [55] H. J. Mussig, H. J. Osten, E. Bugiel, J. Dabrowski, A. Fissel, T. Guminskaya, K. Ignatovich, J. P. Liu, P. Zaumseil, and V. Zavodinsky, IRW Final Report, IEEE, p. 1 (2001). [56] U. Schwalke, Y. Stefanov, R. Komaragiri, T. Ruland, “Electrical characterization of crystalline praseodymium oxide high-κ gate dielectric MOSFETs,” in IEDM Tech. Dig., 2003, pp. 243-246. [57] S. Jeon and H. Hwang, J. Appl. Phys., 93, 6393 (2003). [58] S. Jeon and H. Hwang, “Electrical and physical characteristics of PrTixOy for metal-oxide-semiconductor gate dielectric applications,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4856-4858, 2002. [59] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. 77, 130, (2000). [60] J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000). [61] J. Chen, J. Lian, L. M. Wang, R. C. Ewuing, and L. A. Boatner, Appl. Phys. Lett. 79, 1989 (2001). [62] T. Schroeder, G. Lupina, J. Dabrowski, A. Mane, Ch. Wenger, G. Lippert, and H.-J. Mussig, “Titanium-added praseodymium silicate high-κ layers on Si (001),” Appl. Phys. Lett., 87, 022902 (2005). [63] T. Nishibe, “Low-temperature poly-Si TFTs by excimer laser annealing,” in Proc. Mater. Res. Soc. Symp., vol. 685, pp. 611-615, 2001. [64] K. Sakariya, C. K. M. Ng, P. Servati, and A. Nathan, “Accelerated stress testing of a-Si:H pixel circuits for AMOLED displays,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2577-2583, Dec. 2005. [65] Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi, “Reliability of low temperature poly-silicon TFTs under inverter operation,” IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2370-2374, Oct. 2001. [66] Z. Jin, H. S. Kwok, and M. Wong, “High-performance polycrystalline SiGe thin-film transistors using Al2O3 gate insulators,” IEEE Electron Device Lett., vol. 19, no. 12, pp. 502-504, Dec. 1998. [67] H. S. P. Wong, “Beyond the conventional transistor,” IBM J. Res. Develop., vol. 46, no. 2/3, pp. 133-168, Mar.-May 2002. [68] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May 2001. [69] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, in Tech. Dig. Int. Electron Devices Meet., 2000, 653. [70] H. J. Mussig, H. J. Osten, E. Bugiel, J. Dabrowski, A. Fissel, T. Guminskaya, K. Ignatovich, J. P. Liu, P. Zaumseil, and V. Zavodinsky, IRW Final Report, IEEE, p. 1 (2001). [71] Dieter K. Schroder, “Semiconductor Material and Device Characterization,” Wiley-INTERSCIENCE, 1998. [72] J. Levinson, G. Este, M. Rider, P. J. Scanlon, F. R. Shepherd, and W. D. Westwood, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., vol. 53, no. 2, pp. 193, 1982. [73] J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, no. 12, pp. 5247, 1975. [74] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin film transistors,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915,1989. [75] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. 77, 130, (2000). [76] J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000). [77] J. Chen, J. Lian, L. M. Wang, R. C. Ewuing, and L. A. Boatner, Appl. Phys. Lett. 79, 1989 (2001). [78] T. Nishibe, “Low-temperature poly-Si TFTs by excimer laser annealing,” in Proc. Mater. Res. Soc. Symp., vol. 685, pp. 611-615, 2001. [79] K. Sakariya, C. K. M. Ng, P. Servati, and A. Nathan, “Accelerated stress testing of a-Si:H pixel circuits for AMOLED displays,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2577-2583, Dec. 2005. [80]Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi, “Reliability of low temperature poly-silicon TFTs under inverter operation,” IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2370-2374, Oct. 2001. [81]Z. Jin, H. S. Kwok, and M. Wong, “High-performance polycrystalline SiGe thin-film transistors using Al2O3 gate insulators,” IEEE Electron Device Lett., vol. 19, no. 12, pp. 502-504, Dec. 1998. [82] H. S. P. Wong, “Beyond the conventional transistor,” IBM J. Res. Develop., vol. 46, no. 2/3, pp. 133-168, Mar.-May 2002. [83] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May 2001. [84] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, in Tech. Dig. Int. Electron Devices Meet., 2000, 653. [85] H. J. Mussig, H. J. Osten, E. Bugiel, J. Dabrowski, A. Fissel, T. Guminskaya, K. Ignatovich, J. P. Liu, P. Zaumseil, and V. Zavodinsky, IRW Final Report, IEEE, p. 1 (2001). [86]Dieter K. Schroder, “Semiconductor Material and Device Characterization,” Wiley-INTERSCIENCE, 1998. [87] J. Levinson, G. Este, M. Rider, P. J. Scanlon, F. R. Shepherd, and W. D. Westwood, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., vol. 53, no. 2, pp. 193, 1982. [88] J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, no. 12, pp. 5247, 1975. [89] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin film transistors,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915, 1989.
|