(3.236.214.19) 您好!臺灣時間:2021/05/10 07:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李治宏
研究生(外文):Chih Hung Li
論文名稱:發展有三氧化二鋱的低溫薄膜電晶體的應用
論文名稱(外文):Development of High-k Tb2O3 Dielectrics for Low-Temperature TFTs Applications
指導教授:潘同明
指導教授(外文):T. M. Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:98
中文關鍵詞:薄膜電晶體高介電常數三氧化二鋱
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們使用固相結晶技術沉積低溫複晶矽薄膜電晶體通道之後,我們使用真空濺鍍系統並使用高介電常數材料鋱氧化物,來形成低溫複晶矽薄膜電晶體(poly-Si TFTs)的閘極介電層,再利用氮化鉭當作其閘極。使用鋱氧化物當閘極層,可比傳統以矽氧化物當作閘極介電層的薄膜電晶體有較低的閘極漏電流和卓越的熱穩定性。利用氮化鉭金屬閘極取代傳統複晶矽閘極可降低製程溫度及降低閘極片電阻。
另外,我們在成長複晶矽薄膜電晶體通道之後,利用電漿增強化學蒸鍍系統(PECVD)在通道表面上打四氟化碳電漿(CF4 plasma),再使用鋱氧化物的閘極層和氮化鉭金屬閘極,形成低溫複晶矽薄膜電晶體(poly-Si TFTs)。將其與未打四氟化碳電漿的鋱氧化物閘極層複晶矽薄膜電晶體做比較,打四氟化碳電漿的複晶矽薄膜電晶體擁有較高的導通電流、較低的閘極漏電流與閘極引發汲極漏電(GIDL),並且改善其電子遷移率(mobility)與可靠度的提升。
最後,我們分別對電漿處理過與未用電漿處理過的複晶矽薄膜電晶體做熱載子應力測試與正偏壓溫度不穩定性(positive bias temperature instability)之研究。實驗結果顯示,有經過四氟化碳電漿處理過的複晶矽薄膜電晶體,其可靠度有顯著的改善,這是因為氟會取代在複晶矽通道中和矽與二氧化矽介面處,其較弱的矽氫鍵結,形成較強的矽氟鍵結,而提高對熱載子應力及正偏壓溫度不穩定性的免疫力。
In this work, we deposit Poly-Si channel by SPC crystal system, we utilize high κ value material terbium oxide to form the gate dielectric of the low temperature poly-Si thin film transistors by sputter system, and use TaN as its gate electrode. Compare to the convention oxide gate dielectric thin film transistor , using terbium oxide as gate dielectric shows higher κ value, lower gate-leakage current, and superior thermal stability. Choosing TaN metal gate to replace conventional poly-Si gate can reduce process temperature and sheet resistance of the gate.
In addition, after channel are deposited, we utilize CF4 plasma treatment on it by plasma enhanced chemical vapor deposition (PECVD) system, then use terbium oxide gate dielectric and TaN metal gate to form low temperature poly-Si thin film transistors. Compare with the poly-Si terbium oxide gate dielectric TFTs using CF4 plasma treatment and control TFTs, the CF4 plasma-treated TFTs shows higher on current, lower gate-leakage current, gate-induced drain leakage (GIDL), and improves mobility and reliability.
Finally, we test the CF4 plasma-treated TFTs and control TFTs with hot-carrier stress and positive bias temperature instability (PBTI). The results show that the CF4 plasma-treated TFTs exhibit superior reliability characteristic. The improvement is a result of the fluorine passivation, which reduces trap-state density and forms stronger Si-F bonds in place of the weak Si-H bonds in the poly-Si channel and at the praseodymium titanium oxide gate dielectric/poly-Si interface. So the CF4 plasma treatment can promote hot-carrier stress and positive bias temperature instability (PBTI) immunity.
Acknowledgment……………………………………………………........i Abstrac(Chinese)………………………………………………………...iii
Abstract(English)…………………………………………………...........v
Contents…………………………………………………………..…….vii
Table & Figure Caption……………….………………………………….x
Chapter 1
Introduction
1-1 Overview of Thin-Film Transistors (TFTs)……..….…………....1
1-1-1 Recent High-k Dielectric
1-2 Crystallization of α-Si Thin Film………………….…….………6
1-2-1 Solid Phase Crystallization (SPC)
1-2-2 Excimer laser annealing (ELA)
1-2-3 Metal induced lateral crystallization (MILC)
1-3 Impacts of Grain Boundaries on TFT’s................................8
1-4 Techniques to Upgrade TFT’s Performance…………………......9
1-4-1 Silicon Self ion Implantation
1-4-2 Polysilicon Film Grown by Si2H6 Instead of SiH4
1-4-3 Passivation of Trap States by Plasma
1-5 Motivation…………………………………………….……….11
1-6 Organization of the Thesis…………………………………….14
Chapter 2
Electrical and physical characteristics of Tb2O3 for metal-oxide- semiconductor gate dielectric applications
2-1 Introduction……………………………………….……………15
2-2 Experiments……………………………….……………………16
2-3 Physical characterization……………………………………….16
XRD of Terbium Oxide Analysis
2-4 Electrical characterization
2-4-1 C-V Characteristic………………………………………..17
2-4-2 J-V Characteristic………………………………………...17
2-5 Summary………………………………………………………...17

Chapter 3 High-Performance Poly-Silicon TFTs with TaN Gate Electrode and Tb2O3 Gate Dielectric
3-1 Introduction…………………………………………………….22
3-2 Experiments…………………………………………………….23
3-3 Method of Device Parameter Extraction……….………………25
3-3-1 Determination of Field Effect Mobility
3-3-2 Determination of Threshold Voltage
3-3-3 Determination of Subthreshold Swing
3-3-4 Determination of ON/OFF Current Ratio
3-3-5 Extraction of Grain Boundary Trap State Density
3-4 Results and Discussion…………………………………………30
3-5 Conclusions…………………………………………………….32

Chapter 4 CF4-Plasma-Induced Fluorine Passivation Effects on Poly-Si TFTs with High-κ Tb2O3 Gate Dielectric
4-1 Introduction……………………………………………………..40
4-2 Experiments…………………………………………………….42
4-3 Results and Discussion……………………………....................43
4-4 Conclusions…………………………………………………….49

Chapter 5 Conclusions…………………………………………………..70
[1] Z. Shengdong, Z. Chunziang, J. K. O. Sin, J. N. Li, and P. K. T. Mok,
“Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass,” IEEE Trans. Electron Devices, vol. 47. no. 3, pp. 569-575, 2000.
[2] I. W. Wu, “Low temperature poly-Si TFT technology for AMLCD’s,” Proc. 1995 Int. Workshop on Active-Matrix Liquid-Crystal Displays, Osaka, Japan, 1995.
[3] Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,” Journal of the SID, vol. 9, pp. 169-172, 2001.
[4] S. Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs,” SID Dig., pp.156-159, 1983.
[5] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 38, pp. 1781-1786, 1991.
[6] Mark Stewart, Robert S. Howell, Leo Pires, Miltiadis K. Hatalis, Webster Howard, and Olivier Prache, “Polysilicon VGA active matrix OLED displays-technology and performance,” in IEDM tech, Dig., pp. 871-874, 1998.
[7] Mark Stewart, Robert S. Howell, Leo Pires, Miltiadis K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp.845-851, 2001.
[8] Zhiguo Meng and Man Wong, “Active-matrix organic light-emitting diode displays realized using metal-induced unilaterally crystallized polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 49, pp. 991-996, 2002.
[9] S. Batra, “Development of drain-offset (DO) TFT technology for high density SRAM’s,” Extended Abstracts, vol.94-2, in Electrochemical Soc. Fall Mtg., Miami Beach, FL, Oct. pp. 677-679, 1994.
[10] M. Cao, et al., “A simple EEPROM cell using twin polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 15, pp. 304-308, 1994.
[11] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Trans. Electron Devices, vol. 43, pp. 1930-1936, 1996.
[12] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and system-on-chip integration,” Proceedings of the IEEE, vol.89, pp. 602-633, 2001.
[13] H. Ohshima and S. Morozumi, “Future trend for TFT integrated circuits on glass substrates,” in IEDM Tech. Dig., 1989, pp. 157-160.
[14] K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile application,” in Proc. Symp. VLSI Circuits, Dig. Tech. Papers., pp. 85-90, 2001.
[15] T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, “Low temperature fabrication of high-mobility poly-Si TFTs for large-area LCDs,” IEEE Trans, Electron Devices, vol. 36, no. 9, pp. 1929-1933, Sep. 1989.
[16] K. Sakariya, C. K. M. Ng, P. Servati, and A. Nathan, “Accelerated stress testing of α-Si:H pixel circuits for AMOLED displays,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2577-2583, Dec. 2005.
[17] S. D. S. Malhi, H. Shichijo, S. K. Vanerjee, R. Sundaresan, M. Elahy, G. P. Pollack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, IEEE Trans. Electron Devices, vol. 32, pp. 258-264, 1985.
[18] J. G. Fossum, A. Ortiz-Conde, H. Schichijo, and S. K. Banerjee, “Effects of grain boundaries on the channel conductance of SOI MOSFETs,” IEEE Trans. Electron Devices, vol. ED-30, no. 7, pp. 933-940, Jul. 1983.
[19] T. I. Kamins, “Polycrystalline silicon for integrated circuit applications,” Kluwer, Norwell, MA, 1988.
[20] C. H. Hong, C. Y. Park and H. J. Kim, “Structure and crystallization of low pressure chemical vapor deposited silicon films using Si2H2 gas,” J. Appl. Phys., vol. 71, pp. 5427-5432, 1992.
[21] A. Nakamura, F. Emoto, E. Fujii, and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” IEDM Tech. pp. 847-851, 1990.
[22] S. W. Lee, T. H. Ihn, and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin-film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 8, pp. 407-409, Aug. 1996.
[23] G. K. Guist, and T. W. Sigmon, “High-performance laser-processed polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 77-79, Feb. 1999.
[24] N. Kudo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin-film transistors fabricated by excimer laser annealing method,” IEEE Trans, Electron Devices, vol. 40, pp. 1876-1879, Oct. 1994.
[25] S. W. Lee, T. H. Ihn, and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin-film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, no. 8, pp. 407-409, Aug. 1996.
[26] M. Cao, S. Talwar, K. J. Kramer, T. W. Sigmon, and K. C. Saraswat, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films,” IEEE Trans. Electron Devices, vol. 43, no. 4, pp. 561-567, 1996.
[27] G. K. Giust and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering,” IEEE Trans. Electron Devices, vol. 43, no. 4, pp. 561-567, 1996.
[28] J. S. Im, R. S. Sposili, and M. A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett., vol. 70, no. 25, pp. 3434-3436, 1997.
[29] A. Yin, and S. J. Fonash, “High-performance p-channel poly-Si TFT’s using electron cyclotron resonance hydrogen plasma passivation,” IEEE Electron Device Lett., vol. 15, no. 12, pp. 502-503,1994.
[30] C. K. Yang, T. F. Lei, C. L. Lee, “The combined effects of low pressure NH3 annealing and H2 plasma hydrogenation on poly-silicon thin-film-transistors,” IEEE Electron Device Lett., vol. 15, pp. 389-390, 1994.
[31] J. W. Lee, N. I. Lee, J. I. Kan, C. H. Han, “Characteristics of poly-silicon thin-film transistor with thin-gate dielectric grown by electron cyclotron resonance nitrous oxide plasma,” IEEE Electron Device Lett., vol. 18, pp. 172-174, 1997.
[32] K. C. Moon, J. H. Lee, M. K. Han, “Improvement of polycrystalline silicon thin film transistor using oxygen plasma pretreatment before laser crystallization,” IEEE Trans. Electron Devices., vol. 49, pp. 1319-1322, 2002.
[33] B. H. Min, C. M. Park and M. K. Han, “A novel offset gated poly-silicon thin film transistor without and additional offset mask,” IEEE Electron Device Lett., vol. 16, no. 5, pp. 161-163, 1995.
[34] P. S. Shih, C. Y. Chang, T. C. Chang, T. Y. Huang, D. Z. Peng and F. Yeh, “A novel lightly doped drain poly-silicon thin-film transistor with oxide sidewall spacer formed by on-step selective liquid phase deposition,” IEEE Electron Device Lett., vol. 20, no. 8, pp. 421-423, 1999.
[35] K. Y. Choi and M. K. Han, “A novel gate-overlapped LDD poly-silicon thin-film transistor,” IEEE Electron Device Lett., vol. 17, no. 12, pp. 566-568, 1996.
[36] T. Unagami and O. Kogure, “Large on/off current ratio and low leakage current poly-Si TFTs with multichannel structure,” IEEE Trans. Electron Devices., vol. 35, no. 11, pp. 1986-1989, 1988.
[37] T. Y. Huang, A. G. Lewis, I. W. Wu, A. Chiang, and R. H. Bruce, “New intra gate offset high voltage thin film transistor with misalignment immunity,” Electronics Lett., vol. 25, no. 8, pp. 544-545, 1989.
[38] C. S. Lai, C. L. Lee, T. F. Lei and H. N. Chern, “A novel vertical bottom-gate polysilicon thin film transistor with self-aligned offset,” IEEE Electron Device Lett., vol. 17, no. 5, pp. 199-201, 1996.
[39] G. E. Moore, “Lithography and the future of Moore’s Law,” in Proc. Eighth Optical/Microlithography Conf., SPIE, Feb. 1995, vol. 2440, pp. 2-17.
[40] P. M. Zeitzoff and J. E. Chung, “Weighing in on logic scaling trends,” IEEE Circuits Devices Mag., vol. 18, pp. 18-27, Mar. 2002.
[41] S. Thompson et al., “A 90-nm logic technology featuring 50-nm strained silicon channel transistors, 7 layers of Cu interconnects, low-κ ILD, and 1μm2 SRAM cell,” in IEDM Tech. Dig., 2002, pp. 61-64.
[42] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo and A. Nighiyama, “Thermally stable ultra-thin nitrogen incorporated ZrO2 gate dielectric prepared by low temperature oxidation of ZrN,” in IEDM Tech. Dig., 2001, pp. 20.3.1-20.3.4.
[43] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. GGGribelyuk, H. Okorn-Schmidt, C. D. Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. A. Ragnarsson and Rons, “Ultrathin high-κ gate stacks for advanced CMOS devices,” in IEDM Tech. Dig., 2001, pp. 20.1.1-20.1.4.
[44] Z. Jin, H. S. Kwok, and M. Wong, “High-performance polycrystalline SiGe thin-film transistors using Al2O3 gate insulators,” IEEE Electron Device Lett., vol. 19, no. 12, pp. 502-504, Dec. 1998.
[45] B. W. Busch, O. Pluchery, Y. J. Chabal, D. A. Muller, R. L. Opila, J. R. Kwo, and E. Garfunkel, “Materials characterization of alternative gate dielectrics,” MRS Bull., vol. 27, no. 3, pp. 206-211, Mar. 2002.
[46] C. P. Lin, B. Y. Tsui, M. J. Yang, R. H. Huang, and C. H. Chien, “High-performance poly-silicon TFTs using HfO2 gate dielectric,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 360-363, May 2006.
[47] H. S. P. Wong, “Beyond the conventional transistor,” IBM J. Res. Develop., vol. 46, no. 2/3, pp. 133-168, Mar.-May 2002.
[48] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243-5275, May 2001.
[49] Y. Morimoto, Y. Jinno, K. Hirai, H. Ogata, T. Yamada, and K. Yoneda, J. Electrochem. Soc., 144, 2495 (1997).
[50] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Ciang, IEEE Electron Device Lett., 12, 181 (1991).
[51] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Ciang, IEEE Electron Device Lett., 11, 167 (1990).
[52] H. N. Chern, C. L. Lee, and T. F. Lei, IEEE Trans. Electron Devices, 41, 698 (1994).
[53] C. K. Yang, T. F. Lei, and C. L. Lee, J. Electrochem. Soc., 143, 3302 (1996).
[54] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, in Tech. Dig. Int. Electron Devices Meet., 2000, 653.
[55] H. J. Mussig, H. J. Osten, E. Bugiel, J. Dabrowski, A. Fissel, T. Guminskaya, K. Ignatovich, J. P. Liu, P. Zaumseil, and V. Zavodinsky, IRW Final Report, IEEE, p. 1 (2001).
[56] U. Schwalke, Y. Stefanov, R. Komaragiri, T. Ruland, “Electrical characterization of crystalline praseodymium oxide high-κ gate dielectric MOSFETs,” in IEDM Tech. Dig., 2003, pp. 243-246.
[57] S. Jeon and H. Hwang, J. Appl. Phys., 93, 6393 (2003).
[58] S. Jeon and H. Hwang, “Electrical and physical characteristics of PrTixOy for metal-oxide-semiconductor gate dielectric applications,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4856-4858, 2002.
[59] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. 77, 130, (2000).
[60] J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).
[61] J. Chen, J. Lian, L. M. Wang, R. C. Ewuing, and L. A. Boatner, Appl. Phys. Lett. 79, 1989 (2001).
[62] T. Schroeder, G. Lupina, J. Dabrowski, A. Mane, Ch. Wenger, G. Lippert, and H.-J. Mussig, “Titanium-added praseodymium silicate high-κ layers on Si (001),” Appl. Phys. Lett., 87, 022902 (2005).
[63] T. Nishibe, “Low-temperature poly-Si TFTs by excimer laser annealing,” in Proc. Mater. Res. Soc. Symp., vol. 685, pp. 611-615, 2001.
[64] K. Sakariya, C. K. M. Ng, P. Servati, and A. Nathan, “Accelerated stress testing of a-Si:H pixel circuits for AMOLED displays,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2577-2583, Dec. 2005.
[65] Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi, “Reliability of low temperature poly-silicon TFTs under inverter operation,” IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2370-2374, Oct. 2001.
[66] Z. Jin, H. S. Kwok, and M. Wong, “High-performance polycrystalline SiGe thin-film transistors using Al2O3 gate insulators,” IEEE Electron Device Lett., vol. 19, no. 12, pp. 502-504, Dec. 1998.
[67] H. S. P. Wong, “Beyond the conventional transistor,” IBM J. Res. Develop., vol. 46, no. 2/3, pp. 133-168, Mar.-May 2002.
[68] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May 2001.
[69] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, in Tech. Dig. Int. Electron Devices Meet., 2000, 653.
[70] H. J. Mussig, H. J. Osten, E. Bugiel, J. Dabrowski, A. Fissel, T. Guminskaya, K. Ignatovich, J. P. Liu, P. Zaumseil, and V. Zavodinsky, IRW Final Report, IEEE, p. 1 (2001).
[71] Dieter K. Schroder, “Semiconductor Material and Device Characterization,” Wiley-INTERSCIENCE, 1998.
[72] J. Levinson, G. Este, M. Rider, P. J. Scanlon, F. R. Shepherd, and W. D. Westwood, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., vol. 53, no. 2, pp. 193, 1982.
[73] J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, no. 12, pp. 5247, 1975.
[74] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin film transistors,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915,1989.
[75] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. 77, 130, (2000).
[76] J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).
[77] J. Chen, J. Lian, L. M. Wang, R. C. Ewuing, and L. A. Boatner, Appl. Phys. Lett. 79, 1989 (2001).
[78] T. Nishibe, “Low-temperature poly-Si TFTs by excimer laser annealing,” in Proc. Mater. Res. Soc. Symp., vol. 685, pp. 611-615, 2001.
[79] K. Sakariya, C. K. M. Ng, P. Servati, and A. Nathan, “Accelerated stress testing of a-Si:H pixel circuits for AMOLED displays,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2577-2583, Dec. 2005.
[80]Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi, “Reliability of low temperature poly-silicon TFTs under inverter operation,” IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2370-2374, Oct. 2001.
[81]Z. Jin, H. S. Kwok, and M. Wong, “High-performance polycrystalline SiGe thin-film transistors using Al2O3 gate insulators,” IEEE Electron Device Lett., vol. 19, no. 12, pp. 502-504, Dec. 1998.
[82] H. S. P. Wong, “Beyond the conventional transistor,” IBM J. Res. Develop., vol. 46, no. 2/3, pp. 133-168, Mar.-May 2002.
[83] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May 2001.
[84] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, in Tech. Dig. Int. Electron Devices Meet., 2000, 653.
[85] H. J. Mussig, H. J. Osten, E. Bugiel, J. Dabrowski, A. Fissel, T. Guminskaya, K. Ignatovich, J. P. Liu, P. Zaumseil, and V. Zavodinsky, IRW Final Report, IEEE, p. 1 (2001).
[86]Dieter K. Schroder, “Semiconductor Material and Device Characterization,” Wiley-INTERSCIENCE, 1998.
[87] J. Levinson, G. Este, M. Rider, P. J. Scanlon, F. R. Shepherd, and W. D. Westwood, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., vol. 53, no. 2, pp. 193, 1982.
[88] J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, no. 12, pp. 5247, 1975.
[89] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin film transistors,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔