|
REFERENCES [1]. Brent Keeth, R. Jacob Baker, Brian Johnson, Feng Lin, “An Introduction to DRAM” in ”DRAM circuit design”, IEEE Press 2008 p1~31. [2] Tae Kim, “Low voltage sensing scheme having reduced active power down standby current,” US Patent, 7,372,746 May 13, 2008. [3] C. C. Chen, “Standby current reduction circuit applied in DRAM,” US patent, 6,775,194 Aug. 10, 2004. [4] S. H. Jain et al., “Low resistance, low leakage ultra-shallow P+ junction formation using millisecond flash anneals” T-ED VOL 52 NO 7 p1610-1615 JULY 2005. [5] T. Rupp, et al., “Extending Trench DRAM Technology to 0.15um Ground rule and Beyond” IEDM Technical Dig., 1999, pp. 33-36. [6] F. Fishbum et al., “A 78nm 6F2 DRAM Technology for Multi-giga-bit Densities”, Symp. VLSI Tech. Dig., p28-29 (2004). [7] Gutsche, M.; et al., “Capacitance enhancement techniques for sub-100 nm trench DRAMs” IEDM Technical Digest, pages:18.6.1 - 18.6.4., 2001. [8]. J. Amon, et al., “A highly manufacturable deep trench based DRAM cell layout with a planar array device in a 70nm technology” in Proc. IEDM Tech. Dig., p.73-76, 2004 [9]. K. Kanba, et al., “A 7 Mask CMOS technology Utilizing Liquid Phase Selective Oxide Deposition” in Proc. IEDM Tech. Dig., 1991, P 637. [10]. T. Homa et al., ”A New Interlayer Formation Technology For Completely Planarized Multilevel interconnection by using LPD” in Proc. VLSI Symp., vol. 2-2 p 3-4 1990. [11]. Chihg-Fa Yah, and Chien-Hung Liu, “Applying Selective Liquid Phase Deposition to Create Contact Holes in Plasma Damage-Free Process“, 3rd International Symposium on Plasma Process-Induced Damage, P 223-226, 1998. [12]. Ching-Fa Yeh, TZung-Zu Yuang, and Tai-Ju Chen ”Characterustucs if Self-Induced Lightly-Doped- Drain Polycrystalline Silicon Thin Film Transistors with Liquid-Phase Deposition SiO2 as Gate Insulator and Passivation-layer” IEEE Trans. Electron Device, VOL 42, NO 2, P 307, 1995. [13]. Ching-Fa Yeh, Shyue-shyh Lin and Tzy-Yan Hong, “High Quality Thin Oxide Films Formed by Using Ultra Low Temperature Liquid Phase Deposition” Proc. EDMS, 11-21-78 1994. [14] M.-K. Lee, C.-H. Lin, C.-N. Yang, and C.-D. Yang, “The improvement of liquid phase deposition of silicon dioxide with hydrocloric acid incorporation” Jpn J. Appl. Phys., vol. 37, pp L682-L683, 1998. [15] C. F. Yeh, S –S Lin, C. L. Chen, and Y –C Yang. “Novel Technique for SiO2 Formed by Liquid-Phase Deposition for Low-Temperature Processed Polysilicon TFT” IEEE Electron Device Lett., vol. 14, NO. 8, pp. 403-405, 1993. [16] J.A. Mandelman, et al., “Challenges and future directions for the scaling of dynamic random-access memory (DRAM) “IBM J. RES & DEV.vol. 46 NO. 2/3 MARCH/MAY 2002. [17] Yuan Taur and Tak h. Ning, Fundamental of Modern VLSI Devices, Cambridge University Press, 1998. [18] W. Skorupa et al., “Advanced Thermal Processing of Ultrashallow Implanted Junction Using Flash Lamp Annealing”, The Journal of Electrochemical Society (JECS) 152 (6) G436-G440 (2005). [19] R. D. Chang, P. S. Choi, D. Wristers, and D. L. Kwong, “Experiments and Modeling of Boron Segregation in As Implanted Si During Annealing” IEDM Tech. Dig., 1997 p497. [20] R. Kim et al., “Modeling of Arsenic Transient Enhanced Diffusion and Background Boron Segregation in Low-Energy As+ Implanted Si” IEDM Tech. Dig., 2000 p523. [21] W. Lerch, et al., “Experimental and theoretical results of dopant activation by a combination of spike and flash annealing” IWJT 2007 P129-134 [22] S. H. Jain et al., “Low resistance, low leakage ultra-shallow P+ junction formation using millisecond flash anneals” T-ED VOL 52 NO 7 p1610-1615 JULY 2005. [23] Th. Feudel et al., “Process integration issues with spike, flash, and laser anneal implementation for 90 and65nm technologies” 14th International Conference on Advance Thermal Processing of Semiconductors RTP-2006 p73-78. [24] Yuan Taur and Tak H. Ning, “CMOS device design” in “Fundamental of Modern VLSI Devices,” Cambridge University Press. 1998 p164-223. [25] K. Roy et al., “Leakage current mechanisms and leakage reduction techniques in deep-sub-micrometer CMOS circuits.” Proceeding of the IEEE, 91 305-327(2003). [26] G. H. Buh, G. H. Yon, T. S. Park, J. W. Lee, J. Y. Kim, “Integration of Sub-melt Laser Annealing on Metal Gate CMOS Devices for Sub-50 nm Node DRAM,” IEDM Tech. Dig., Session-33.4, (2006). [27] M. Chang et al., “Impact of Gate Induced Drain Leakage on Retention Time Distribution of 256Mbit DRAM with Negative Word line Bias” IEEE ED, VOL. 50, NO. 4, 1036-1041 April 2003. [28] S. Zhao et al., “GIDL Simulation and Optimization for 0.13um/1.5V Low Power CMOS Transistor Design” SISPAD 2002 43-46. [29] A. Cleverie et al., “Extended defects in shallow implants” Appl. Phys. A 76, 1025-1033 (2003). [30] D. J. Eaglesham et al., “Implantation and transient B diffusion in Si: The source of the interstitials” Appl. Phys. Lett. 65(18), 31 Oct. 2305-2307 (1994). [31] D. A. Neamen, “The pn Junction Diode” in” Semiconductor Physics & Devices: basic principles” MacGraw-Hill Companies, Inc. 1997 p 241-306. [32] K. Uwasawa, T. Uchida, T.Ikezawa, M. Hane, T. Matsuke, H. Kato and K.Ishida, “A new boron diffusion model incorporating the dislocation loop growth” IEDM Tech. Dig. 1994 p873-876. [33] R. Weis, and et al., “A Highly Cost Efficient 8F2 DRAM Cell with a Double Gate Vertical Transistor Device for 100 nm and Beyond” Tech. Digest of IEDM, pp. 415-418 (2001) [34] R. Divakaruni et al., “Technologies for Scaling Vertical Transistor DRAM Cells to 70nm “ VLSI Tech Dig., 5B-2 (2003) [35] S. M. Sze, “MOSFET Structure” in “Physics of Semiconductor Devices”, John Wiley and Sons, Inc. (1981), P490. [36] J. Y. Kim et al., “The breakthrough in data retention time of DRAM using Recess-Channel-Array Transistor(RCAT) for 88 nm feature size and beyond,” VLSI Technical digest, pp.11-12, 2003. [37] W.S. Lee et al.,” Analysis of data retention time of nano-scale DRAM and its prediction by indirectly probing the tail cell leakage current” IEDM 2004 [38] J. Y. Kim et al., “The excellent scalability of the RCAT (Recess-Channel-Array-Transistor) technology for sub-70nm DRAM feature size and beyond,” Symp. VLSI TSA Tech. Dig., p33-34 (2005). [39] S.J. Ahn et al., “Novel DRAM Cell Transistor with Asymmetric Source and Drain Junction Profiles Improving Data Retention Characteristics”, VLSI Tech. Dig., pp 176-177, 2002 [40] Y. K. Park et al., “Fully Integrated 56nm DRAM Technology for 1Gb DRAM”, VLSI Tech. Dig., pp 190-191, 2007. [41] W. Mueller et al., “Challenges for the DRAM Cell Scaling to 40nm” IEDM 2005. [42] S. -W Chung et al., “Highly Scalable Saddle-Fin(S-Fin) Transistor for sub-50nm DRAM Technology”, VLSI Tech. Dig., T_05_01 2006. [43] L. Heineck et al.,”A novel cell arrangement enabling Trench DRAM scaling to 40nm and beyond” Tech. Dig. IEDM, pp. 31-34 2007. [44] T. Schloesser et al., “A 6F2 Buried Wordline DRAM Cell for 40nm and Beyond”, VLSI Tech. Dig., pp 809-812 2007. [45] C. H. Lee et al., “Novel Body Tied FinFET Cell Array Transistor DRAM with Negative Word Line Operation for sub 60nm Technology and beyond”, VLSI Tech. Dig., pp 130-131 2004. [46] T. Schloesser et al., “Highly Scallable Sub-50nm Vertical Double Gate Trench DRAM Cell”, Tech. Dig. IEDM (2004). [47] Xuejie Shi; Man Wong, “Effects of substrate doping on the linearly extrapolated threshold voltage of symmetrical DG MOS devices”, IEEE Transactions on Electron Devices, Volume 52, Issue 7, July 2005 Page(s):1616 – 1621 [48] Jean-Pierre Colinge, “ The SOI MOSFET” in “FinFETs and Other Multi-Gate Transistors” Springer 2008 [49] Majkusiak, B. et al., “Semiconductor thickness effects in the double-gate SOI MOSFET”, IEEE Transactions on Electron Devices, Volume 45, Issue 5, May 1998 Page(s):1127 – 1134 [50] Jin-Hyeok Choi et al., “Electron mobility behavior in extremely thin SOI MOSFET's”, IEEE Electron Device Letters, Volume 16, Issue 11, Nov. 1995 Page(s):527 - 529 [51] J.-W Yang, et al., “Highly Manufacturable Double-Gate FinFET With Gate- Source/Drain Underlap”, IEEE Transactions on Electron Devices, Volume 54, Issue 6, June 2007 Page(s):1464 – 1470 [52] Yang-Kyu Choi et al., “Investigation of Gate-Induced Drain Leakage (GIDL) Current in Thin Body Devices: Single-Gate Ultra-Thin Body, Symmetrical Double-Gate, and Asymmetrical Double-Gate MOSFETs”, Jpn. J. Appl. Phys. 42 (2003) pp. 2073-2076. [53] Hyun-Sook Byun et al., “3-Dimensional Analysis on the GIDL Current of Body-tied Triple Gate FinFET”, Simulation of Semiconductor Processes and Devices, 2006 International Conference on Sept. 2006 Page(s):267 – 270. [54]Yong-Sung Kim et al., “Local-Damascene-FinFET DRAM Integration with P+ doped-silicon gate Technology for sub-60nm Device Generation” Tech. Dig. IEDM (2005). [55] Makoto Yoshida et al., “RC-FinFET (Recessed Channel FinFET) Cell Transistor Technology for Future Generation DRAMs” International Conference on Solid State Device and Materials (SSEM), 2007 pp 230~231. [56] Deok-Hyung Lee et al., “Improved Cell Performance for sub-50nm DRAM with Manufacturable Bulk FinFET Structure”, VLSI Tech. Dig., pp 164-165 2007. [57] K. Sunouchi et al., “A surrounding Gate Transistor (SGT) cell for 64/256M bit DRAMs” Tech. Dig. IEDM 1989. [58] K. Kim, “Future memory technology: challenges and opportunities”, VLSI Tech. Dig., pp 5-9 2008. [59] J.M.Yoon et al.,”A Novel Low Leakage Current VPT (Vertical Pillar Transistor) Integration for 4F2 DRAM Cell Array with sub 40nm Technology”, Technical Digest 64th Device Research Conference 2006. [60] F. Hoffmann et al., “Surrounding Gate Select Transistor for 4F2 stacked Gbit DRAM”, Tech. Dig. IEDM 2003. [61] B. Goebel et al., “Fully Depleted Surrounding Gate Transistor (SGT) for 70nm DRAM and Beyond”, Tech. Dig. IEDM 2002. [62] F. Matsuoka et al., “Numerical Analysis of Alpha-Particle-Induced Soft Errors in Floating Channel Type Surrounding Gate Transistor (FC-SGT) DRAM Cell” IEEE Electron Devices, VOL. 50, NO. 7, JULY 2003 [63] C. M. Hsieh, P. C. Murley, and R. R. O’breien, “A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices,” IEEE Electron Device Lett., vol. EDL–2, Apr. 1981. [64] F. Matshoka et al., “Device Design Guidelines for FC-SGT DRAM Cells With High Soft-Error Immunity”, IEEE Trans. On Electron Devices, VOL. 52, NO. 6, JUNE 2005 [65] K. Ohta et al., “A QUADRUPLY SELF-ALIGNED MOS (QSA MOS) A NEW SHORT CHANNEL HIGH SPEED HIGH DENSITY MOSFET FOR VLSI” Tech. Dig. IEDM 25.5 1979 [66] H. J. Oh et al., “Digh-Density Low-Power-Operating DRAM Device Adopting 6F2 Cell Scheme with Novel S-RCAT Structure on 80nm Feature Size and Beyond. [67] S.J. Lin and C. S. Lai et al., “A novel trench capacitor enhancement approach by selective liquid-phase deposition”, IEEE Transaction on Semiconductor Manufacturing. VOL 18 NO 4, November 2005. [68] S. J. Lin and C. S. Lai et al., “Integration of Millisecond Flash annealing on CMOS Devices for DRAM Manufacturing”, Symposium VLSI-TSA Tech. Dig., T-65 p99-100 (2008) [69] S.J. Lin and C. S. Lai et al., “Gate-induced drain leakage (GIDL) improvement for Millisecond Flash Anneal (MFLA) in DRAM Application”, IEEE Transaction on Electron Device (to be published in August 2009). [70] S.J. Lin and C. S. Lai et al., “Junction Breakdown Improvement by using Millisecond Flash Anneal (MFLA) in DRAM Application “, Journal of Electrical Chemical Society (JECS) (paper submitting).
|