(3.236.214.19) 您好!臺灣時間:2021/05/06 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:朱薏璇
研究生(外文):Yi Hsuan Chu
論文名稱:立體定位系統於帕金森氏症動物模式影像分析之應用
論文名稱(外文):Image Analysis for Parkinson's Animal Model Using the Stereotactic System
指導教授:李建德李建德引用關係
指導教授(外文):Jiann Der Lee
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:82
中文關鍵詞:電腦輔助系統帕金森氏症影像對位組織標記立體定位手術系統高能聚焦式超音波
外文關鍵詞:computer-aided systemParkinson’s diseaseimage registrationtissues labelingStereotactic SystemHigh-intensity focused ultrasound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
帕金森氏症是一種慢性的中樞神經系退化疾病,現在治療帕金森氏症的手術大部分為侵入性手術,因此伴隨著手術危險。相較於傳統手術方式,利用高聚能超音波(High-intensity focused ultrasound, HIFU)進行局部熱切除組織,是一套安全且可行的方法。為了達成HIFU系統引導超音波聚焦至切除組織,本文發展一套可應用在HIFU系統上的帕金森氏症動物腦部影像立體定位手術系統。
一般而言,帕金森氏症之診斷可利用99mTc-TRODA顯影劑進行單光子電腦斷層掃描影像(SPECT),再藉由評估多巴胺(Dopamine)神經元的健康程度得知。在臨床上,醫師則利用核磁共振影像(MRI)與注入顯影劑所照射出來的SPECT影像進行帕金森氏症評估。因此,本文開發核磁共振影像(MRI)、 SPECT影像之間的影像對位演算法以及全自動MRI組織標記演算法,以建構帕金森氏症動物腦部影像立體定位手術系統,使其能應用在高能聚焦式超音波(High-intensity focused ultrasound, HIFU)系統上。
經由實驗結果證實,透過本系統的人機介面,醫生可計算帕金森氏症老鼠腦部多巴胺的 Binding Ratio值,因此能有效評估其帕金森氏症的表現。

關鍵詞:電腦輔助系統、帕金森氏症、影像對位、組織標記、立體定位手術系統、高能聚焦式超音波
Parkinson’s disease (PD) is a neurodegenerative disorder disease. The current surgical approaches are to disable thalamus or pallidum by means of ablation or stimulation. However, risks still occurs while inserting electrodes or probes into patient’s deep brain region. Potential risks include internal bleeding, permanent tissue damage while inserting the electrode to the target, and possible neural fiber damage. On the other hand, high-intensity focused-ultrasound (HIFU) contains the nature of conducting highly selective thermal ablations and at the same time preventing the surrounding tissues undamaged, has a high potential to be a promising surgical tool alternative for Parkinson’s disease. The purpose of this paper is to propose a stereotactic system for high-intensity focused ultrasound to treat the Parkinson’s mouse.
Single photon emission computed tomography image (SPECT) of dopamine transporter with 99mTc-TRODAT-1 has recently been proposed to be a valuable and feasible means of assessing the integrity of dopamine neurons. In order to measure the binding ratio of the striatum within, the corresponding MRI is needed to be registered to SPECT for bounding the regions of interest. Therefore, we have built a computer-aided clinical diagnosis system which integrates MRI/SPECT registration and MRI labeling for the evaluation of Parkinson’s disease.


Keywords: computer-aided system, Parkinson’s disease, image registration, tissues labeling、Stereotactic System、High-intensity focused ultrasound
目錄

指導教授推薦書
口試委員會審定書
國家圖書館博碩士論文及電子檔案上網授權書 iii
授權書 iv
致謝 v
中文摘要 vi
英文摘要 vii
目錄 viii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 系統流程 4
1.3 論文架構 6
第二章 腦部立體定位導引系統 7
2.1 簡介 7
2.2 CT影像立體定位演算法 9
2.3 高能聚焦式超音波立體定位系統 11
第三章 MRI組織分割 14
3.1 簡介 14
3.2 腦部圖譜三維重建 14
3.3 圖譜與MRI影像對位 16
3.4 MRI組織分割演算法 18
3.4.1 圖譜導向分割方法 20
3.4.2 仿射(Affine)對位 21
3.4.3 彈性對位 23
3.4.4 多重解析度之VOI選取機制 26
第四章 MRI/SPECT剛性對位 28
4.1 簡介 28
4.2 剛性對位演算法 29
4.2.1 相似性評估 31
4.2.2 最佳化演算法 33
4.2.3 轉換函數 34
4.2.4 影像內插 35
第五章 實驗結果與分析 38
5.1 軟硬體設備及影像格式來源 38
5.2 立體定位系統 41
5.2.1 實驗測試結果 41
5.3 MRI/SPECT對位實驗 46
5.3.1 實驗測試結果 46
5.3.2 準確度驗證 48
5.4 MRI組織標記實驗 50
5.4.1 驗證標準 50
5.4.2 圖譜實驗測試 51
5.4.3 以交互訊息為基礎的標記結果 53
5.4.4 VOI選取策略實驗 58
5.5 帕金森氏症臨床評估 61
第六章 結論 64
參考文獻 66

圖目錄

圖1-1 老鼠腦部紋狀體 2
圖1-2 注射99mTc-TRODAT-1的SPECT影像 3
圖1-3 系統流程圖 5
圖1-4 HIFU立體定位系統流程圖 6
圖2-1 立體定位框架(a)俯視圖(b)側視圖 8
圖2-2 藉由立體定位框架在CT影像上產生的9個參考點 9
圖2-3 CT影像在N型結構裝置之橫切圖 10
圖2-4 立體定位框架與高能聚焦式超音波結合(a)俯視圖 12
圖2-4 立體定位框架與高能聚焦式超音波結合(b)側視圖(c)斜視圖 13
圖3-1 雲形曲線示意圖 16
圖3-2 腦部圖譜與MRI影像之對位 17
圖3-3 具有欲分割組織的正常老鼠序列影像 19
圖3-4 具有欲分割組織的帕金森氏症老鼠序列影像 19
圖3-5 以圖譜為導向的分割方法基本架構 21
圖3-6 彈性對位架構 24
圖3-7 變形場的表示 24
圖3-8 由粗到細架構 25
圖3-9 以圖譜為導向的分割方法評估 26
圖3-10 VOI選取機制 27
圖4-1 剛性對位示意圖 29
圖4-2 剛性對位架構說明圖 30
圖4-3 交互訊息之間的關係圖 32
圖4-4 雙線性內插法示意圖 37
圖4-5 三線性內插法示意圖 37
圖5-1 第一組框架樣式照(a)俯視圖(b)側視圖 42
圖5-1 第二組框架樣式照(c)俯視圖(d)側視圖 43
圖5-1 第三組框架樣式照(e)俯視圖(f)側視圖 44
圖5-2 使用者圖形介面(GUI) 47
圖5-3 MRI/SPECT融合結果 48
圖5-4 正常老鼠群組的均方誤差 49
圖5-5 帕金森氏症老鼠群組的均方誤差 49
圖5-6 MRI-圖譜對位 51
圖5-7 圖譜中紋狀體的輪廓 52
圖5-8 MRI-圖譜融合結果 53
圖5-9 使用交互訊息之2D正常老鼠影像的標記結果 56
圖5-10 使用交互訊息之2D帕金森氏症老鼠影像的標記結果 57
圖5-11 使用VOI選取之2D正常老鼠影像的標記結果 59
圖5-12 使用VOI選取之2D帕金森氏症老鼠影像的標記結果 60
圖5-13 平均Binding Ratio值比較圖表 63

表目錄

表5-1 正常老鼠群組之相關資訊 39
表5-2 帕金森氏症老鼠群組之相關資訊 40
表5-3 第一樣式錯誤率 45
表5-4 第二樣式錯誤率 45
表5-5 第三樣式錯誤率 45
表5-6 交互訊息為基礎之2D正常老鼠群組的標記結果 55
表5-7 交互訊息為基礎之2D帕金森氏症老鼠群組的標記結果 55
表5-8 交互訊息為基礎之2.5D正常老鼠群組的標記結果 58
表5-9 交互訊息為基礎之2.5D帕金森氏症老鼠群組的標記結果 58
表5-10 VOI選取之2D正常老鼠群組的標記結果 59
表5-11 VOI選取之2D帕金森氏症老鼠群組的標記結果 59
表5-12 VOI選取之2.5D正常老鼠群組的標記結果 61
表5-13 VOI選取之2.5D帕金森氏症老鼠群組的標記結果 61
表5-14 正常老鼠1計算的平均Binding Ratio值 62
表5-15 正常老鼠2計算的平均Binding Ratio值 62
表5-16 正常老鼠3計算的平均Binding Ratio值 62
表5-17 帕金森氏症老鼠1計算的平均Binding Ratio值 62
表5-18 帕金森氏症老鼠2計算的平均Binding Ratio值 62
表5-19 帕金森氏症老鼠3計算的平均Binding Ratio值 63
參考文獻

[1] C. G. Goetz, J. Jankovic, G. W. Paulson, “Update on Parkinson’s disease. Patient Case,” vol. 23, pp. 124-162, 1989.
[2] C. M. Tanner, “Occupational and environmental causes of parkinsonism,” Occup Med. vol. 7, pp. 503-513, 1992.
[3] M. W. Fox, J. E. Ahlskog, P. J. Kelly, “Stereotactic ventrolateral thalamotomy for medically refractory tremor in post-levodopa era Parkonson’s disease patients,” Journal Neurosurg, vol.75, pp. 723-730, 1991.
[4] J. Jankovic, F. Cardoso, R.G. Grossman, W.J. Jamilton, “Outcome after stereotactic thalamotomy for parkinsonian, essential, and other types of tremor,” Nurosurgery, vol. 37, pp. 680-687, 1995.
[5] W. J. Fry, J. W. Barnard, F. J. Fry, R. F. Krumins, J. F. Brennan, “Ultrasonic lesions in the mammalian central nervous system,” Science , vol.122, pp. 517-518, 1955.
[6] J. Y. Chapelon, M. Ribault, F. Vernier, R. Souchon, A. Gelet, “Treatment of localised prostate cancer with transrectal high intensity focused ultrasound,” Eur J Ultrasoun , vol. 9, pp. 31-8, 1999.
[7] K. Hynynen, A. Darkazanli, E. Unger, J.F. Schenck, “MRI-guided noninvasive ultrasound surgery,” Med Phys, vol.20, pp. 107-15, 1993.
[8] N.T. Sanghvi, R.H. Hawes, “High-intensity focused ultrasound,” Gastrointest Endosc Clin N Am, vol. 4, pp. 383-95, 1994.
[9] G. Ter Haar, “Ultrasound focal beam surgery,” Ultrasound Med Biol, vol. 21, pp. 1089-100, 1995.
[10] Donald Hearn, M. Pauline Baker, Computer Graphics, 2nd Ed., Prentice Hall, Inc, 1994.
[11] J. V. Hajnal, D. L. G. Hill and D. J. Hawkes, “Medical Image Registration,” CRC Press, pp.281-301, 2001.
[12] L. Thurfjell, Y. H. Lau, J. L. R. Andersson and B.F. Hutton, “Improved efficiency for MR-SPET registration based on mutual information,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 27, pp. 847-856, 2000.
[13] C. Grova, A. Biraben, J. M. Scarabin, P. Jannin, I. Buvat and H. Benali, “A methodology to validate MRI/SPECT registration methods using realistic simulated SPECT data,” Lecture Notes in Computer Science, vol. 2208, pp. 275-282, 2001.
[14] Y. M. Zhu and S. M. Cochoff, “Influence of implementation parameters on registration of MR and SPECT brain images by maximization of mutual information,” Journal of Nuclear Medicine, vol. 43, pp. 160-166, 2002.
[15] T. Yokoi, T. Soma, H. Shinohara and H. Matsuda, “Accuracy and reproducibility of co-registration techniques based on mutual information and normalized mutual information for MRI and SPECT brain images,” Annals of Nuclear Medicine, vol. 18, pp. 659-667, 2004.
[16] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Transaction on Medical Imaging, vol. 16, pp. 187–198, Apr. 1997.
[17] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens and G. Marchal, “Automated multi-modality image registration based on information theory,” Information Processing in Medical Imaging, Dordrecht, Kluwer Academic Publishers, pp. 263-274, 1995.
[18] P. Viola and W. M. Wells, “Alignment by maximization of mutual information,” In Proceeding of 5th International Conference of Computer Vision, pp. 16-23, 1995.
[19] J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, “Mutual- informationbased registration of medical images: a survey,” IEEE Transactions on Medical Imaging, vol. 22, pp. 986-1004, 2003.
[20] C. Studholme, D. L. G. Hill and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognition, vol. 32, pp. 71-86, 1999.
[21] E. R. Denton, L. I. Sonoda, D. Rueckert, S. C. Rankin, C. Hayes and M. O. Leach, et al, “Comparison and evaluation of rigid, affine, and nonrigid registration of breast MR images,” Journal of Computer Assisted Tomography, vol. 23, pp. 800-805, 1999.
[22] P. E. Radau, P. J. Slomka, P. Julin, L. Svensson and L. O. Wahlund, “Evaluation of linear registration algorithms for brain SPECT and the errors due to hypoperfusion lesions,” Medical Physics, vol. 28, pp. 1660-1668, 2001.
[23] C. Stodholme, E. Novotny, I. G. Zubal and J. S. Duncan, “Estimating tissue deformation between functional images induced by intracranial electrode implantation using anatomical MRI,” NeuroImage, vol. 13, pp. 561-576, 2001.
[24] J. V. Hajnal, D. L. G. Hill and D. J. Hawkes, “Medical Image Registration,” CRC Press, pp.281-301, 2001
[25] M. Holden, D. L. G. Hill, E. R. E. Denton, J. M. Jarosz, T. C. S. Cox, T. Rohlfing, J. Goodey and D. J. Hawkes, “Voxel Similarity Measures for 3-D Serial MR Brain Image Registration,” IEEE Transaction on Medical Image, vol. 19, no. 2, pp. 94-102, 2000.
[26] D. Skerl, B. Likar and F. Pernus, “Evaluation of nine similarity measures used in rigid registration,” In Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, pp.794-797, 2004.
[27] S. Przedborski, V. Jackson-Lewis, A.B. Naini, M. Jakowec, G. Petzinger, R. Miller, and M. Akram, “The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydrophridine(MPTP): a technical review of its utility and safety.” Journal of Neurochemistry. vol. 76, pp.1265-1274, 2001
[28] T. Pfluger, C. Vollmar, A. Wismuller, S. Dresel, F. Berger and P. Suntheim, et al., “Quantitative comparison of automatic and interactive methods for MRI-SPECT image registration of the brain based on 3-Dimensional calculation of error,” Journal of Nuclear Medicine, vol. 41, pp. 1823-1829, 2000.
[29] D. L. Collins, W. Dai, T. Peter and A. Evans, “Automatic 3D model-based neuroanatomical segmentation,” Human Brain Mapping, vol. 3, pp. 190-208, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔