(18.232.50.137) 您好!臺灣時間:2021/05/07 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳智遠
研究生(外文):Chih Yuan Chen
論文名稱:考量需求與存貨相依及空間限制之耗損物品寄銷模式
論文名稱(外文):A consignment inventory model for deteriorating items with stock-dependent demand and space constraint
指導教授:王勝本王勝本引用關係
指導教授(外文):S. P. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:企業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:51
中文關鍵詞:需求與存貨相依寄銷存貨貨架空間限制易腐性
外文關鍵詞:stock-dependent demandconsignment inventoryshelf space constraintdeterioration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
所謂的「寄銷存貨」是指供應商將貨物先存放在零售商的貨架空間,直到商品實際銷售後零售商才和供應商結款,此模式可以有效地降低雙方整體的成本。另外,許多文獻指出零售商貨架陳列物品數量常會正向刺激顧客需求;然而過多存貨累積會造成積壓資金運轉並引發無謂成本。且在實務中,零售商貨架空間常有可能不足。
本論文研究單一供應商生產單一具易腐性商品,供貨給單一零售商之寄銷存貨模式,並考慮在零售商一端的顧客需求與其陳列存貨水準正向相關與零售商貨架空間有限的實際條件。本論文建立此供應鏈問題的數學模式,以雙方整體利潤最大化為目標,並尋求零售商的最佳訂購批次量與供應商的最佳運送次數。
最後藉由參數的敏感度分析發現:(一)當零售商的貨架空間逐漸增大到某個上限之前,雙方的整體利潤也會隨著增加;當貨架空間超過此上限時,整體利潤將維持不變;(二)在零售商的貨架空間無上限時,當需求受存貨量的影響係數變大,則零售商的訂購批次量、供應商的運送次數與雙方的整體利潤都會隨著增加;但當存貨耗損率上升時,雙方的整體利潤會下降。
“Consignment inventory” is the process of supplier placing goods at a customer location without receiving payment until after the goods are used or sold and it can be mutually beneficial to both the supplier and the retailer. According to previous studies, displaying numerous goods on the shelf might stimulate customer demand. However, stocking too much inventory may tie up retailer’s capital. In practice, the volume of shelf space should be taken into consideration while trading off the number of goods in display.
This study considers a single-supplier single-retailer supply chain problem with stock-dependent retailer demand; product deterioration and retailer have limited shelf space. In the inventory system, consignment is executed. This study makes two main conclusions. First, as the retailer’s shelf space increases the supplier’s replenishment frequency and joint profit increase. But, joint profit remains unchanged while retailer’s shelf space reaches a limit. Second, in the no shelf space constraint model supplier’s replenishment frequency, retailer’s order quantity and joint revenue increase when demand is highly sensitive to the retailer’s shelf inventory. But the deterioration rate has the negative impact on the joint profit value.
Content
指導教授推薦書
口試委員會審定書
長庚大學博碩士論文著作授權書 iii
摘要 iv
Abstract v
Content vi
List of Figures vii
List of Tables viii
Chapter 1. Introduction - 1 -
1.1 Background and motivation - 1 -
1.2 Research objective - 3 -
1.3 Thesis framework - 3 -
Chapter 2. Literature Review - 6 -
2.1 Stock-dependent demand - 6 -
2.2 Consignment inventory - 8 -
Chapter 3. No shelf space constraint model - 11 -
3.1 The total cost per cycle time of supplier - 14 -
3.2 The total cost per cycle time of retailer - 16 -
Chapter 4. Shelf space constraint model - 22 -
4.1 The total cost per cycle time of supplier - 23 -
4.2 The total cost per cycle time of retailer - 25 -
Chapter 5. Numerical analysis - 30 -
5.1 No shelf space constraint model - 30 -
5.2 Shelf space constraint model - 31 -
Chapter 6. Conclusions - 36 -
Reference - 37 -


List of Figures
Figure 1: The process of this research - 5 -
Figure 2: No shelf space constraint inventory relation between supplier and retailer - 15 -
Figure 3: Shelf space constraint inventory relation between supplier and retailer - 23 -
Figure 4: The relation of retailer inventory level and time - 25 -
Figure 5: The relation between profit and parameter - 33 -


List of Tables
Table 1: Optimal solution and sensitivity analysis - 30 -
Table 2: Optimal solution and sensitivity analysis - 32 -
Table 3: The relation between profit and parameter - 33 -
Table 4: The sensitivity analysis while =120 - 34 -
Table 5: The sensitivity analysis while =150 - 34 -
Table 6: The sensitivity analysis while =180 - 35 -
Alfares, H. K., “Inventory model with stock-level dependent demand rate and variable holding cost,” International Journal of Production Economics, Vol. 108, No. 1-2, 2007, pp. 259-265.
Baker, R. C. and Urban, T. L., “A deterministic inventory system with an inventory-level-dependent demand rate,” Journal of Operational Research Society, Vol. 39, No. 9, 1988, pp. 823-831.
Banerjee, A., “A joint economic-lot-size model for purchaser and vendor,” Decision Sciences, Vol. 17, No. 3, 1986, pp. 292-311.
Blackstone, J. H. and Cox, J. F., APICS dictionary 11th ed., Chicago, APICS Publishing, 2004.
Braglia, M. and Zavanella, L., “Modelling an industrial strategy for inventory management in supply chains: the ‘Consignment Stock’ case,” International Journal of Production Research, Vol. 41, No. 16, 2003, pp. 3793-3808.
Chang, C. Y., “Consignment stock of inventories in the presence of deteriorating item subject to buyer warehouse capacity constraints,” Master thesis, Chang Gung University Master of Business Administration, 2007. (In Chinese)
Chang, C. T., “Inventory models with stock-dependent demand and nonlinear holding costs for deteriorating items,” Asia-Pacific Journal of Operational Research, Vol. 21, No. 4, 2004, pp. 435-446.
Datta, T. K. and Pal, A. K., “A note on an inventory model with inventory-level-dependent demand rate,” Journal of the Operational Research Society, Vol. 41, No. 10, 1990, pp. 971-975.
Giri, B. C. and Pal, S., Chaudhuri, K. S., “An inventory model for deteriorating items with stock-dependent demand rate,” European Journal of Operational Research, Vol. 95, No. 3, 1996, pp. 604-610.
Goh, M., “EOQ models with general demand and holding cost functions,” European Journal of Operational Research, Vol. 73, No. 1, 1994, pp. 50-54.
Goyal, S. K., “An integrated inventory model for a single supplier-single customer problem,” International Journal of Production Research, Vol. 15, No. 1, 1977, pp. 107-111.
Goyal, S. K. and Chang, C. T., “Optimal ordering and transfer policy for an inventory with stock dependent demand,” European Journal of Operational Research, Vol. 196, No. 1, 2009, pp. 177-185.
Gupta, R. and Vrat, P., “Inventory model for stock-dependent consumption rate,” Opsearch, Vol. 23, No. 1, 1986, pp. 19-24.
Hill, R. M., “The single-supplier single-buyer integrated production-inventory model with a generalized policy,” European Journal of Operational Research, Vol. 97, No. 3, 1997, pp. 493-499.
Hill, R. M., “On optimal two-stage lot sizing and inventory batching policies,” International Journal of Production Economics, Vol. 6, No. 2, 2000, pp. 149-158.
Jain, S., Kumar, M., and Advani, P., “An inventory model with inventory level-dependent demand rate, deterioration, partial backlogging and decrease in demand,” International Journal of Operations Research, Vol. 5, No. 3, 2008, pp. 154-159.
Larson, P. D. and DeMarais, R. A., “Psychic stock: An independent variable category of inventory,” International Journal of Physical Distribution and Logistics Management, Vol. 20, No. 7, 1990, pp. 28-34
Lee, W. Y. and Wang, S. P., “Managing level of consigned inventory with buyer’s warehouse capacity constraint,” Production Planning & Control, Vol. 19, No. 7, 2008, pp.677-685.
Levin, R. I. and McLaughlin, C. P., Lamone, R. P., Kottas, J. F., Production/Operations Management: Contemporary Policy for Managing Operating Systems, McGraw-Hill, New York,1972.
Lu, L., “A one-vendor multi-buyer integrated inventory model,” European Journal of Operational Research, Vol. 81, No. 2, 1995, pp. 312-323.
Min, J. and Zhou, Y. W., “A perishable inventory model under stock-dependent selling rate and shortage-dependent partial backlogging with capacity constraint,” International Journal of System Science, Vol. 40, No. 1, 2009, pp. 33-44.
Pal, S., Goswami A., and Chaudhuri K., “A deterministic inventory model for deteriorating items with stock-dependent demand rate,” International Journal of Production Economics, Vol. 32, No. 3, 1993, pp. 291-299.
Persona, A., Grassi, A., and Catenaa, M., “Consignment stock of inventories in the presence of bbsolescence,” International Journal of Production Research, Vol. 43, No. 23, 2005, pp. 4969-4988.
Silver, E. A. and Peterson, R., Decision Systems for Inventory Management and Production Planning, Wiley, New York, 1985.
Soni, H. and Shah N. S., “Optimal ordering policy for stock-dependent demand under progressive payment scheme,” European Journal of Operational Research, Vol. 184, No. 1, 2008, pp. 91-100.
Urban, T. L., “An inventory model with an inventory-level-dependent demand rate and relaxed terminal conditions,” Journal of Operational Research Society, Vol. 43, No. 7, 1992, pp. 721-724.
Urban, T. L., “An extension of inventory models with discretely variable holding costs,” International Journal of Production Economics, Vol. 114, No. 1, 2008, pp. 399-403.
Wei, K. C. “A consignment stock model with stock-dependent demands and limited shelf space,” Master thesis, Chang Gung University Master of Business Administration, 2008. (In Chinese)
Whitin, T. M., The Theory of Inventory Management, Princeton: Princeton University Press, 1957.
Wolfe, H. B., “A model for control of style merchandise,” Industrial Management Review, Vol. 9, No. 2, 1968, pp. 69-82.
Yang, P. C. and Wee, H. M., “An integrated multi-lot-size production inventory model for deteriorating item,” Computers & Operations Research, Vol. 30, No. 5, 2003, pp. 671-682.
Zhou, Y. W., Min J., and Goyal, S. K., “Supply-chain coordination under an inventory-level-dependent demand rate,” International Journal of Production Economics, Vol. 113, No. 2, 2008, pp.518-527.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔