(3.238.173.209) 您好!臺灣時間:2021/05/16 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉恒良
研究生(外文):Heng Liang Liu
論文名稱:黏著界面微觀力學分析和破裂成長模擬之技術開發與其在門牙陶瓷貼片之臨床應用
論文名稱(外文):The development of the techniques in adhesive interfacial micro-mechanical analysis and crack propagation simulation and their clinical application to the ceramic veneer on an incisor
指導教授:孫明宗林峻立林峻立引用關係
指導教授(外文):M. T. SunC. L. Lin
學位類別:博士
校院名稱:長庚大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:160
中文關鍵詞:黏著劑牙釉質有限元素次模組元素隱沒破裂成長
外文關鍵詞:adhesiveenamelfinite elementsubmodelingelement deathcrack propagation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用黏著劑將復形物附著於牙齒是ㄧ項常見的治療方式,但黏著成功率通常取決於黏著劑與牙齒界面之微機械式嵌合的力學行為,然而目前對於此黏著界面之微觀力學反應並沒有一項較佳的分析方法可供使用;此外黏著界面的破裂也是臨床上常見的現象,如何有效率地模擬黏著界面的微觀破裂成長行為也是一項重要的課題。因此本論文之目的是利用有限元素法之次模組和元素增生/隱沒之分析技術,並結合黏著界面備製、界面微觀觀測、疊代程式設計、黏著劑斷裂強度測試等工作,開發界面微觀力學分析與材料破裂成長模擬之二項核心分析技術,並利用不同黏著劑型態之剪力模擬分析與體外實驗驗證二項核心技術之合理性;此外運用這二項技術探討門牙全陶瓷貼片之臨床問題,包括1.貼片黏著厚度與咬合角度二維分析;2.門牙貼片咬合力量之三維模擬分析。研究方法可分為核心技術開發與臨床問題應用二大部分。首先在技術開發方面,於有限元素軟體中(ANSYS 11.0)建構牙釉質/黏著劑/全陶瓷複合體之剪力實驗巨觀模型,由此模型分析得知牙釉質與黏著劑界面之最大應力發生位置,並於此位置分別建構全蝕型與自蝕型二組微觀模型,這些微觀模型之界面接合型態是依據電子顯微鏡觀察而獲得,邊界條件則根據巨觀模型分析之位移量結果而給定。隨後依據自行測得之黏著劑最大斷裂強度作為材料破裂準則,並於有限元素軟體中開發可與元素隱沒技術結合並疊代運算之程式以模擬界面之微觀破裂成長行為;最後執行體外實驗進行結果比對。於臨床應用方面,首先針對門牙貼片黏著厚度與咬合角度進行二維有限元素微觀力學探討,方法為建構並分析門牙全陶瓷方形貼片之二維有限元素巨觀模型,其中黏著劑厚度分別設計為10、30、60、100、140 μm,咬合角度與牙齒軸向成0、60、120度,之後於黏著劑高應力出現位置建構牙釉質與黏著劑之微觀模型,並利用先前所開發之界面微觀力學分析與材料破裂成長模擬之二項核心技術分析其結果。此外也針對門牙貼片之咬合力量進行三維有限元素微觀力學探討,方法為利用微電腦斷層取得門牙之斷面影像,經過影像處理、輪廓線擷取、有限元素模型建構等程序獲得門牙貼片之三維巨觀模型,設定咬合力量由10至100 N,並於黏著劑高應力位置建構牙釉質與黏著劑界面之微觀模型,最後同樣利用先前所開發之二項核心技術分析其微觀反應與破裂行為。技術開發之結果顯示,由微觀模型獲得全蝕型黏著劑比自蝕型黏著劑具有較佳的微觀力學表現;全蝕型黏著劑之界面初始破裂發生於最上方之微機械式嵌合根部,並由上而下沿著牙釉質與黏著劑界面依序斷裂;自蝕型黏著劑初始破裂位置發生在每一支微機械式嵌合之根部,之後破裂沿著牙釉質和黏著層界面破裂;這些模擬結果與體外實驗結果相似,因此本研究所開發之微觀界面力學分析與材料破裂成長模擬之二項技術,其分析結果應該合理。臨床應用之結果顯示,不論何種黏著劑或咬合角度下,黏著劑之高應力均出現在舌側邊緣的牙釉質與黏著劑界面之微機械式嵌合根部;於正常60度咬合力,黏著劑厚度大於約50 μm會發生黏著破壞;此外對於黏著界面之微觀應力影響而言,咬合角度因子大於黏著劑厚度因子。黏著初始破壞發生在舌側邊緣的牙釉質與黏著劑界面之微機械式嵌合根部,之後沿著牙釉質與黏著劑界面往唇側方向破裂成長。運用有限元素次模組與元素隱沒之分析技術所開發之微觀界面力學分析與材料破裂成長模擬技術,應該可提供較佳的方法分析黏著界面之微觀力學反應與破裂成長行為。
Background: Retention between restorative material and tooth is the major factor affecting the long term survival rate of the dental restoration, it usually primarily depends on the mechanical behavior of the micro interlocking for the resin tags on the enamel/adhesive (E/A) interface. To date, there is no adequate research method to investigate the micro mechanics of the E/A interface. In addition, further recognize the initiation and accumulation of crack processes associated with the resin tags on the E/A interface also can improve the interfacial bonding mechanism. Objective: The aim of this study is attempted to utilize the advanced finite element (FE) methods, such as submodeling and element birth and death approaches to develop the adhesive interfacial micro- mechanical analysis and crack propagation simulation techniques. After the core techniques development, two clinical aspects regarding to the ceramic veneer incisor with various cement thicknesses under different occlusal force condition are investigated to understand the E/A interfacial micro mechanics. Methods: To develop and validate the techniques, a plane strain FE macro-model of the enamel-adhesive-ceramic complex was generated and analyzed to perform the shear bond testing. Stress concentrated area found in the macro-model was selected to construct total-etch and self-etch micro-models which included different resin tags morphologies based on SEM micrograph. Tensile test was performed to obtain an ultimate cement tensile strength to determine the material failure parameters. Element birth and death technique provided in FE method was then adopted to simulate the resin tags crack propagation in the micro-models. Parallel in-vitro shear testing experiments were also performed to validate the simulation. To apply two novel techniques in clinical problems, five plane strain FE macro-models of butt-joint ceramic veneer with different cement thicknesses (10, 30, 60, 100, 140 μm) were generated. A load was applied at the incisal edge with an angulation of 0°, 60° and 120° respectively to the longitudinal tooth axis. Five total-etch micro-models corresponding to the macro-models were constructed at an E/A interface where the stress concentration was found. Two developed techniques were performed to understand the micro-mechanical behaviors. Furthermore, section contours of an intact incisor were acquired from micro-CT (computed tomography) to construct 3D FE macro-model considered with butt-joint veneer design. Ten loads from 10 to 100 N increments with 10 N were applied with an angulation of 60°. The micro-model was constructed at an E/A interface where was the stress concentration area in the macro-model. Two developed techniques were also performed to investigate the micro-mechanical responses. Results: The total-etch and self-etch micro-models results demonstrated that stress concentration within the adhesive mainly occurred at the resin tags base, particularly for the self-etch micro-model. Simulated fracture paths were found at the resin tags base along the E/A interface. The SEM morphological observation of fracture patterns obtained from in-vitro testing corresponded with the simulation results. Regarding the clinical applications, the stress concentration within the adhesive was found at the resin tag base of the E/A interface in lingual side. Bonding failure could found when the cement layers presented more than about 50 μm under normal occlusion. Thicker cement thickness induces more stresses within the adhesive than thinner cement. An increase in stresses appeared for all situations with a more transverse angulation of load. All simulated fracture paths were found at the resin tags base along the E/A interface from lingual to labial side. Conclusion: The developed adhesive interfacial micro-mechanical analysis and crack propagation simulation techniques could better simulate the micro-mechanical responses and micro-crack accumulation noted at the E/A interface.
指導教授推薦書………………………………………………………… i
口試委員審定書……………………………………………………… ii
授權書………………………………………………………………… iii
誌謝…………………………………………………………………… iv
中文摘要……………………………………………………………… v
英文摘要…………………………………………………………… vii
目錄…………………………………………………………………… ix
表目錄………………………………………………………………… xiii
圖目錄……………………………………………………………… xiv


第一章 緒論…………………… 1
1.1黏著界面力學背景闡述……………………………………… 1
1.1.1界面力學之重要性與問題……………………………… 1
1.1.2探討微觀力學方法之瓶頸…………………………… 4
1.1.3次模組與元素增生/隱沒技術………………………… 7
1.1.4核心技術開發與臨床應用…………………………… 11
1.2門牙貼片臨床問題應用……………………………………… 13
1.2.1門牙巨觀與微觀解剖簡介………………………… 13
1.2.2陶瓷貼片之臨床應用發展…………………………… 18
1.2.3貼片電腦輔助設計與製造………………………… 22
1.2.4陶瓷貼片與牙齒黏著機制………………………… 26
1.2.5陶瓷貼片臨床失敗與原因…………………………… 29
1.3研究動機…………………………………………………… 31
1.4文獻回顧……………………………………………………… 32
1.4.1黏著劑微觀力學之探討……………………………… 32
1.4.2破裂成長模擬分析探討……………………………… 39
1.4.3黏著劑型態之力學影響……………………………… 42
1.4.4門牙黏著劑厚度之影響……………………………… 43
1.4.5門牙貼片咬合狀態影響……………………………… 46
1.4.6文獻回顧總結………………………………………… 48
1.5研究目的……………………………………………………… 50
第二章 材料方法…………………………………………………… 52
2.1研究工作流程………………………………………………… 52
2.2技術開發:黏著劑型態之剪力模擬分析與體外實驗驗證… 55
2.2.1牙釉質與黏著劑界面影像擷取……………………… 55
2.2.2黏著劑拉伸降伏強度實驗執行……………………… 63
2.2.3二維剪力實驗模型建構與分析……………………… 65
2.2.4二維微觀界面模型建構與分析……………………… 67
2.2.5二維黏著界面之破裂成長模擬……………………… 71
2.2.6三維剪力實驗模型建構與分析……………………… 73
2.2.7三維微觀界面模型建構與分析……………………… 75
2.2.8三維黏著界面之破裂成長模擬……………………… 76
2.2.9體外剪力破壞實驗執行與驗證……………………… 78
2.3技術應用(一):貼片黏著厚度與咬合角度二維分析……… 80
2.3.1二維門牙貼片之分析參數設計……………………… 80
2.3.2門牙貼片巨觀模型建構與分析……………………… 80
2.3.3黏著界面微觀模型建構與分析……………………… 83
2.3.4黏著界面之微觀破壞成長模擬……………………… 84
2.4技術應用(二):門牙貼片咬合力量之三維模擬分析……… 86
2.4.1門牙之微電腦斷層取得與處理……………………… 86
2.4.2門牙貼片巨觀模型建構與分析……………………… 89
2.4.3黏著界面微觀模型建構與分析……………………… 91
2.4.4黏著界面之微觀破壞成長模擬……………………… 92
第三章 結果………………………………………………………… 93
3.1技術開發:黏著劑型態之剪力模擬分析與體外實驗驗證… 93
3.1.1黏著外形與拉伸強度結果…………………………… 93
3.1.2巨觀微觀力學分析結果……………………………… 96
3.1.3破裂成長模擬分析結果…………………………… 100
3.1.4體外剪力實驗驗證結果……………………………… 104
3.2技術應用(一):貼片黏著厚度與咬合角度二維分析…… 106
3.2.1巨觀微觀力學分析結果……………………………… 106
3.2.2破裂成長模擬分析結果……………………………… 112
3.3技術應用(二):門牙貼片咬合力量之三維模擬分析…… 116
3.3.1巨觀微觀力學分析結果……………………………… 116
3.3.2破裂成長模擬分析結果……………………………… 118
第四章 討論……………………………………………………… 120
4.1技術開發:黏著劑型態之剪力模擬分析與體外實驗驗證… 120
4.1.1黏著界面外形與黏著劑拉伸強度………………… 120
4.1.2巨觀與微觀力學分析………………………………… 121
4.1.3破裂成長之模擬分析………………………………… 123
4.2技術應用(一):貼片黏著厚度與咬合角度二維分析…… 125
4.2.1巨觀與微觀力學分析………………………………… 125
4.2.2破裂成長之模擬分析………………………………… 127
4.3技術應用(二):門牙貼片咬合力量之三維模擬分析…… 129
4.3.1巨觀與微觀力學分析………………………………… 129
4.3.2破裂成長之模擬分析………………………………… 130
4.4核心技術之問題討論……………………………………… 131
4.5研究限制與未來方向……………………………………… 134
第五章 結論……………………………………………………… 137
參考文獻………………………………………………………… 138


表目錄
表2-1 有限元素分析模型之材料特性匯總表……………………… 66
表2-2 本研究上顎正中門牙外形與文獻統計尺寸對照表………………… 87


圖目錄
圖1-1 黏著劑與牙齒黏著交接界面之顯微結構圖……………………… 3
圖1-2 門牙陶瓷貼片與牙釉質間黏著層之元素規劃外觀圖…………… 6
圖1-3 次模組技術應用於旋翼葉片之分析…………………………10
圖1-4 利用元素增生與隱沒技術探討隧道開挖過程之力學行為… 10
圖1-5 本研究之核心技術開發與臨床應用圖…………………… 12
圖1-6 上顎正中門牙冠狀面及矢狀面與垂直線之夾角示意圖…… 15
圖1-7 釉晶體於釉柱之排列方向圖……………………………… 15
圖1-8 牙本質小管微觀解剖構造圖………………………………… 17
圖1-9 前牙區牙齒之臨床問題……………………………………… 20
圖1-10 陶瓷貼片成品圖…………………………………………… 20
圖1-11 前牙區陶瓷貼片修復後之外觀圖……………………… 20
圖1-12 傳統手工燒結式陶瓷貼片製作流程……………………… 21
圖1-13 CEREC牙科電腦輔助工程設計與製造系統……………… 24
圖1-14 CEREC電腦輔助設計製作製作流程………………… 25
圖1-15 各型黏著劑之主要操作步驟比較圖……………… 28
圖1-16 應用次模組技術分析全肩關節置換之力學行為………… 35
圖1-17 應用次模組技術分析人工牙根與周邊骨質之力學行為… 35
圖1-18 應用次模組技術分析正中門牙牙釉鞘之應力行為……… 36
圖1-19 二維有限元素法分析剪力與微剪力強度於黏著劑之力學影響… 36
圖1-20 利用實體元素模擬門牙貼片之黏著劑有限元素模型…… 37
圖1-21 利用彈簧元素模擬小臼齒MOD齲齒之黏著層有限元素模型……37

圖1-22 利用薄殼與實體元素模擬小臼齒MOD齲齒之黏著層有限元素模型… 38
圖1-23 牙本質與樹脂黏著界面微觀有限元素模型……………… 38
圖1-24 利用元素增生與隱沒技術探討焊接過程之應力變化與殘留應力分析… 40
圖1-25 牙本質/黏著劑/複合樹脂之破裂成長模擬分析………… 40
圖1-26 巨觀破裂成長模擬分析……………………………………… 41
圖2-1 本研究主要研究工作流程圖……………………………… 54
圖2-2 牙釉質與黏著劑界面之微觀型態影像擷取流程圖……… 59
圖2-3 牙釉質樣品製作流程圖……………………………………… 60
圖2-4 陶瓷塊樣品製作流程圖……………………………………… 61
圖2-5 牙釉質與陶瓷塊顯微觀測樣品製作流程圖……………… 62
圖2-6 黏著劑拉伸強度實驗試件之製作與架設…………………… 64
圖2-7 牙釉質/黏著劑/陶瓷塊剪力強度實驗之二維有限元素巨觀模型尺寸大小、元素規劃與邊界條件圖… 66
圖2-8 二維微觀模型建構圖………………………………… 69
圖2-9 有限元素次模組分析運算過程流程圖……………………… 70
圖2-10 材料破壞模擬程式之視窗式介面執行圖………………… 72
圖2-11 材料破壞模擬程式疊代運算流程圖………………………… 72
圖2-12 牙釉質/黏著劑/陶瓷塊剪力強度實驗之三維巨觀有限元素模型尺寸、元素規劃與邊界條件圖… 74
圖2-13 三維微觀模型建構圖……………………………………… 77
圖2-14 剪力破壞實驗試件架設與測試圖…………………………… 79
圖2-15 上顎正中門牙於黏著層厚度100 μm之二維有限元素巨觀模型外形、元素規劃與邊界條件圖… 82
圖2-16 二維微觀模型於黏著層厚度100 μm之建構流程圖……… 85
圖2-17 上顎正中門牙巨觀分析模型建構流程圖………………… 88
圖2-18 上顎正中門牙三維巨觀有限元素模型之半側外形、元素規劃與邊界條件圖… 90
圖2-19 三維全陶瓷門牙貼片之黏著界面微觀模型建構說明圖… 92
圖3-1 3,000倍微機械式嵌合之SEM影像圖…………………… 94
圖3-2 1,000倍牙釉質與黏著劑界面之SEM影像圖…………… 95
圖3-3 二維黏著層區域應力分佈圖………………………………… 98
圖3-4 三維模型之黏著層區域應力分佈圖………………………… 99
圖3-5 二維黏著層材料破裂成長模擬圖………………………… 102
圖3-6 全蝕型黏著劑之三維黏著層材料破裂成長模擬圖………… 103
圖3-7 2,000倍牙釉質斷面之SEM影像圖…………………… 105
圖3-8 巨觀模型之黏著層區域主應力分佈圖…………………… 108
圖3-9 黏著劑厚度與巨觀和微觀模型所獲得之最大主應力關係圖……… 109
圖3-10 微觀模型之黏著層區域主應力分佈圖…………………… 110
圖3-11 黏著劑厚度與咬合角度所造成微觀之最大主應力數值關係圖…… 111
圖3-12 正常60度咬合之黏著劑材料微觀破裂成長模擬分析圖… 114
圖3-13 黏著層厚度60 μm時,黏著劑材料破裂成長模擬圖…… 115
圖3-14 門牙貼片承受50 N咬合負載時,黏著材料區域之主應力分佈圖… 117
圖3-15 門牙貼片承受50 N咬合負載時,黏著材料區域之三維微觀破裂成長模擬圖… 119
1. Peumans M, Van Meerbeek B, Lambrechts P. Porcelain veneers: a review of the literature. Journal of Dentistry 2000;28:163−177.
2. Stacey GD. A shear stress analysis of the bonding of porcelain veneers to enamel. Journal of Prosthetic Dentistry 1993;70:395–402.
3. Peumans M, van Meerbeek B, Yoshida Y. Porcelain veneers bonded to tooth structure: an ultra-morphological FE-SEM examination of the adhesive interface. Dental Materials 1999;15:105−119.
4. Perdigão J. New developments in dental adhesion. Dental Clinics of North America 2007;51:333−357.
5. Van Landuyt K, Kanumilli P, De Munck J, Peumans M, Lambrechts P, Van Meerbeek B. Bond strength of a mild self-etch adhesive with and without prior acid-etching. Journal of Dentistry 2006;34:77−85.
6. Di Hipólito V, de Goes MF, Carrilho MR, Chan DC, Daronch M, Sinhoreti MA. SEM evaluation of contemporary self-etching primers applied to ground and unground enamel. The Journal of Adhesive Dentistry 2005:7:203−211.
7. Shimada Y, Tagami J. Effects of regional enamel and prism orientation on resin bonding. Operative Dentistry 2003;28:20−27.
8. Kanemura N, Sano H, Tagami J. Tensile bond strength to and SEM evaluation of ground and intact enamel surfaces. Journal of Dentistry 1999,27:523−530.
9. Beer FP, Johnson ER, DeWolf JT. Mechanics of materials. 3rd edition, McGraw-Hill Engineering, New York, 2002.
10. Betamar N, Cardew G., Van Noort R. Influence of specimen designs on the microtensile bond strength to dentin. Journal of Adhesive Dentistry 2007;9:159−168.
11. Heinrich JC, Pepper DW. The finite element method: basic concepts and applications. 2nd edition, Taylor & Francis, New York, US, 2006.
12. Troedson M, Derand T. Effect of margin design, cement polymerization, and angle of loading on stress in porcelain veneers. Journal of Prosthetic Dentistry 1999;82:518−524.
13. Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen YW. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: A non-linear finite element study. Journal of Dentistry 2008;36:409−417.
14. Ichima I, Schmidlinb PR, Kiesera JA, Swaina MV. Mechanical evaluation of cervical glass-ionomer restorations: 3D finite element study. Journal of Dentistry 2008;36:409−417.
15. Ichim I, Kuzmanovic DV, Love RM. A finite element analysis of ferrule design on restoration resistance and distribution of stress within a root. International Endodontic Journal 2006;39:443−452.
16. ANSYS 11.0, manual.
17. 畢向陽,巷道開挖支護的仿真模擬,2006年ANSYS用戶年會論文
18. Woelfel JB, Scheid RC. Dental anatomy. 6th edition, Lippincott Williams & Wilkins, Maryland, 2002.
19. Berkovitz BKB, Holland GR, Moxham BJ. Color atlas and textbook of oral anatomy histology and embryology. 2ed edition, Mosby Year Book, London, UK, 1992.
20. Melfi RC, Alley KE. Permar’s oral embryology and microscopic anatomy. 10th edition, Lippincott Williams & Wilkins, Maryland, 2000.
21. Jacobsen PH. Restorative dentistry: an integrated approach. Butterworth-
Heinemann Oxford, Boston, 1998.
22. Peumans M, Van Meerbeek B, Lambrechts P. The five-year clinical performance of direct composite additions to correct tooth form and position. Part I: aesthetic qualities. Clinical Oral Investigations 1997;1:12–18.
23. Peumans M, Van Meerbeek B, Lambrechts P. The five-year clinical performance of direct composite additions to correct tooth form and position. Part II: marginal qualities. Clinical Oral Investigations 1997;1:19–26.
24. Pincus CR. Building mouth personality. Journal of South California Dental Association 1938;14:125–9.
25. Rochette AL. A ceramic restoration bonded by etched enamel and resin for fractured incisors. Journal of Prosthetic Dentistry 1975;33:287−293.
26. Shaini FJ, Shortall AC, Marquis PM. Clinical performance of porcelain laminate veneers. A retrospective evaluation over a period of 6.5 years. Journal of Oral Rehabilitation 1997;24:553−559.
27. Garber DA. Porcelain laminate veneers: to prepare or not to prepare? Compendium of Continuing Education in Dentistry 1991;XII:178–182.
28. Peumans M, Van Meerbeek B, Lambrechts P. The five-year clinical performance of direct composite additions to correct tooth form and position. Part I: aesthetic qualities. Clinical Oral Investigations 1997;1:12–18.
29. Liu PR. A panorama of dental CAD/CAM restorative systems. Compendium of Continuing Education in Dentistry 2005;26:507−508.
30. Tinschert J, Natt G, Hassenpflug S. Status of current CAD/CAM technology in dental medicine. International Journal of Computerized Dentistry 2004;7:25−45.
31. Duke ES. The status of CAD/CAM in restorative dentistry. Compendium of Continuing Education in Dentistry 2001;22:968−972.
32. Luthardt RG, Sandkuhl O, Herold V. Accuracy of mechanical digitizing with a CAD/CAM system for fixed restorations. International Journal of Prosthodontics 2001;14:146−151.
33. www.sirona.com
34. Chang YH, Liu PR, Essig ME. A new technique for generating a computer-aided design and computer-integrated machining crown: case report. Chang Gung Medical Journal 1999;22:633−638.
35. today-ceramic.com
36. Roulet JF, Wilson NHF, Fuzzi M. Advances in operative dentistry. Quintessence Pub. Co., Michigan, 2001.
37. Morin M. CEREC: The power of technology. Compendium of continuing education in dentistry 2001;22(Suppl):27−29.
38. Martin N. Jedynakiewicz NM. Clinical performance of CEREC ceramic inlays: a systematic review. Dental Materials 1999;15:54−61.
39. Perdigão J. New developments in dental adhesion. Dental Clinics of North America 2007;51:333−357.
40. De Munck J, van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, van Meerbeek B. A critical review of the durability of adhesion to tooth tissue: methods and results. Journal of Dental Research 2005;84:118−132.
41. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. Journal of Dental Research 1955;34:849−853.
42. Weerasinghe DS, Nikaido T, Wettasinghe KA. Micro-shear bond strength and morphological analysis of a self-etching primer adhesive system to fluorosed enamel. Journal of Dentistry 2005;33:419−426.
43. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Operative Dentistry 2003;28:215−235.
44. Swift EJ Jr, Friedman MJ. Critical appraisal. Porcelain veneer outcomes, part I. Journal of Esthetic & Restorative Dentistry 2006;18:54−57.
45. Sieweke M, Salomon-Sieweke U, Zofel P, Stachniss V. Longevity of oroincisal ceramic veneers on canines–a retrospective study. Journal of Adhesive Dentistry 2000;2:229–234.
46. Meijering AC, Creugers NH, Roeters FJ. Survival of three types of veneer restorations in a clinical trial: a 2.5-year interim evaluation. Journal of Dentistry 1998;26:563−568.
47. Shaini FJ, Shortall AC, Marquis PM. Clinical performance of porcelain laminate veneers. A retrospective evaluation over a period of 6.5 years. Journal of Oral Rehabilitation 1997;24:553−559.
48. Goracci C, Cury AH, Cantoro A, Papacchini F, Tay FR, Ferrari M. Microtensile bond strength and interfacial properties of self-etching and self-adhesive resin cements used to lute composite onlays under different seating forces. The Journal of Adhesive Dentistry 2006;8:327−335.
49. Soderholm KM, Guelmann M, Bimstein. Shear bond strength of one 4th and two 7th generation bonding agents when used by operators with different bonding experience. The Journal of Adhesive Dentistry 2005;7:57−64.
50. Suh PS, Johnson R, White SN. Fit of veneers made by CAD-CAM and platinum foil methods. Operative Dentistry 1997;22:121−127.
51. Sim C, Ibbetson RJ. Comparison of fit of porcelain veneers fabricated using different techniques. International Journal of Prosthodontics 1993;6:36–42.
52. Wall JG, Reisbick MH, Espelata KG. Cement luting thickness beneath porcelain veneers made on platinum foil. The Journal of Prosthetic Dentistry 1992;68:448–450.
53. Paphangkorakit J, Osborn JW. Effect of jaw opening on the direction and magnitude of human incisal bite forces. Journal of Dental Research 1997;76:561−567.
54. Magne P, Versluis A, Douglas WH. Effect of luting composite shrinkage and thermal loads on the stress distribution in porcelain laminate veneers. Journal of Prosthetic Dentistry 1999;81:335−344.
55. Cormier NG, Smallwood BS, Sinclair GB, Meda G, Aggressive submodelling of stress concentrations. International Journal for Numerical Methods in Engineering 1999;46:889–909.
56. Gupta S, van der Helm FCT, van Keulen F. Stress analysis of cemented glenoid prostheses in Total Shoulder Arthroplasty. Journal of Biomechanics 2004;37:1777−1786.
57. Gupta S, van der Helm FCT, van Keulen F. The possibilities of uncemented glenoid component–a finite element study. Clinical Biomechanics. 2004;19:292−302.
58. Simmons AC, Meguid SA, Pilliar RM. Mechanical regulation of localized and appositional bone formation around bone-interfacing implants. Journal of biomedical materials research 2001;55:63−71.
59. Miura J, Maeda Y, Nakai H, Zako. Multiscale analysis of stress distribution in teeth under applied forces. Dental Materials 2009;25:67−73.
60. Magne P, Tan DT. Incisor compliance following operative procedures: a rapid 3-D finite element analysis using micro-CT data. The Journal of Adhesive Dentistry 2008;10:49−56.
61. Oono K, Omura Y, Uehara K, Teramura T, Nemoto H, Murata Y, Iwai H. Stress analysis of porcelain laminate veneers. Nihon University Journal of Oral Science 1990;16:294−301.
62.Reeh ES, Ross GK. Tooth stiffness with composite veneers: A strain gauge and finite element evaluation. Dental Materials 1994;10: 247−252.
63. Betamar N, Cardew G, van Noort R. Influence of specimen designs on the microtensile bond strength to dentin. The Journal of Adhesive Dentistry 2007;9:159−168.
64. Placido E, Meira JBC, Lima RG, Muench A, de Souza RM, Ballester RY. Shear versus micro-shear bond strength test: A finite element stress analysis. Dental Materials 2007;23:1086−1092.
65. Troedson M, Derand T. Shear stresses in the adhesive layer under porcelain veneers: a finite element method study. Acta Odontologica Scandinavica 1998;56:257−262.
66. Zarone F, Apicella D, Sorrentino R. Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers: a 3D finite element analysis. Dental Materials 2005;21:1178−1188.
67. Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations−a 3D finite element analysis. Dental Materials 2002;18:295−303.
68. Ausiello P, Rengo S, Davidson CL. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study. Dental Materials 2004;20:862−872.
69. Misra A, Spencer P, Marangos O, Wang Y, Katz JL. Micromechanical analysis of dentin/adhesive interface by the finite element method. Journal of Biomedical Material Research Part B: Applied Biomaterials 2004;70B: 56–65.
70. Sattari-Far I, Javadia Y. Influence of welding sequence on welding distortions in pipes. International Journal of Pressure Vessels and Piping 2008;85:265–274.
71. Mahapatra MM, Datta GL, Pradhan B, Mandal NR. Modelling the effects of constraints and single axis welding process parameters on angular distortions in one-sided fillet welds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2007;221:397–407.
72. Teng TL, Chang PH, Tseng WC. Effect of welding sequences on residual stresses. Computers and Structures. 2003;81:273−286.
73. Verma V, Baran G, Sadeghipour K, Boberick K. Effects of different cavity shapes on residual stresses in polymerized dental restoration. Proceeding of IEEE 28th Annual Northeast Bioengineering Conference 2002:283–284.
74. Versluis A, Tantbirojn D, Douglas WH. Why do shear bond tests pull out dentin? Journal of Dental Research 1997;76:1298−1307.
75. Ichim I, Li Q, Li W, Swain MV, Kieser J. Modelling of fracture behaviour in biomaterials. Biomaterials 2007;28:1317–1326.
76. Cura C. Effect of different bonding agents on shear bond strengths of composite-bonded porcelain to enamel. The Journal of Prosthetic Dentistry 2003;89:394 –399.
77. Soderholm KM, Guelmann M, Bimstein. Shear bond strength of one 4th and two 7th generation bonding agents when used by operators with different bonding experience. The Journal of Adhesive Dentistry 2005;7:57−64.
78. Goracci C, Cury AH, Cantoro A, Papacchini F, Tay FR, Ferrari M. Microtensile bond strength and interfacial properties of self-etching and self-adhesive resin cements used to lute composite onlays under different seating forces. The Journal of Adhesive Dentistry 2006;8:327−335.
79. Cho SH, Chang WG, Lim BS, Lee YK. Effect of die spacer thickness on shear bond strength of porcelain laminate veneers. Journal of Prosthetic Dentistry 2006;95:201−208.
80. Chana HS, Ibbetson RJ, Pearson GJ, Eder A. The influence of cement thickness on the tensile strength of two resin cements. The International Journal of Prosthodontics 1997;10:340−344.
81. Tuntiprawon MT, Wilson PR. The effect of cement thickness on the fracture strength of all-ceramic crowns. Australian Dental Journal 1995;40:17−21.
82. Prakki A, Cilli R, Da Costa AU, De Paiva Gonalves SE, Lia Mondelli RF, Pereira JC. Effect of resin luting film thickness on fracture resistance of a ceramic cemented to dentin. Journal of Prosthodontics 2007;16:172−178.
83. Molin MK, Karlsson SL, Kristiansen MS. Influence of film thickness on joint bend strength of a ceramic/resin composite joint. Dental Materials 1996;12:245−249.
84. Scherrer SS, Rijk WG, Belser UC, Meyer JM. Effect of cement film thickness on the fracture resistance of a machinable glass-ceramic. Dental Materials 1994;10:172−177.
85. Seymour KG, Cherukara GP, Samarawickrama DYD. Stresses within porcelain veneers and the composite lute using different preparation designs. Journal of Prosthodontics 2004;10:16−21.
86. 于海洋、杜傳詩、巢永烈,三維有限元法分析瓷貼面厚度對三型瓷貼面複合體應力分佈的影響,華西口腔醫學雜誌,1998;16:365−367.
87. Kamposiora P, Papavasiliou G, Bayne SC. Finite element analysis estimates of cement micro-fracture under complete veneer crowns. Journal of Prosthetic Dentistry 1994;71:435−441.
88. Kamposiora P, Papavasiliou G, Bayne SC, Felton DA. Predictions of cement microfracture under crowns using 3D-FEA. Journal of Prosthodontics 2000;9:201−209.
89. DeHoff PH, Anusavice KJ, Wang ZX. Three-dimensional finite element analysis of the shear bond test. Dental Materials 1995;11:126−131.
90. Santos J, Jose D. Occlusion: principles and concepts. 2ed edition, Ishiyaku EuroAmerica, 1996.
91. White SN, Zhao XY, Zhaokun Y. Cyclic mechanical fatigue of a feldspathic dental porcelain. International Journal of Prosthodontics 1995;8:413−420.
92. Dunne SM, Millar BJ. A longitudinal study of the clinical performance of porcelain veneers. British Dental Journal 1993;175:317−321.
93. Walls AW. The use of adhesively retained all-porcelain veneers during the management of fractured and worn anterior teeth: Part 1. Clinical technique. British Dental Journal 1995;178:333−336.
94. Huang SJ, Lee HE, Wang CH. Stress analysis of different designs of porcelain laminate veneer − finite element method. Master thesis, 2003.
95. 樊聰、馮海蘭、劉莉,對瓷貼面粘結層的有限元應力分析,實用口腔醫學雜誌2003;19:308−311.
96. Craig RG, Peyton FA, Johnson DW. Compressive properties of enamel, dental cements, and gold. Journal of Dental Research 1961;40:936–945.
97. Seghi RR, Denry I, Brajevic F. Effects of ion exchange on hardness and fracture toughness of dental ceramics. The International Journal of Prosthodontics 1992;5:309–314.
98. Magne P, Douglas WH. Design optimization and evolution of bonded ceramics for the anterior dentition: a finite-element analysis. Quintessence International 1999;30:661−672.
99. Peumans M, De Munck J, Fieuws S, Lambrechts P, Vanherle G, Van Meerbeek BA prospective ten-year clinical trial of porcelain veneers. Journal of Adhesive Dentistry 2004;6:65–76.
100. Christensen GJ. Clinical and research advancements in cast gold restorations. Journal of Prosthetic Dentistry 1971;25:62–68.
101. American Dental Association Specification no. 8. Journal of American Dental Association 1978;57:121–3.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊