跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/25 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昆燁
研究生(外文):Kun Yeh Lin
論文名稱:流體輔助射出成型圓板件指影現象之研究與探討
論文名稱(外文):Investigation of the Viscous Fingering in Fluid Assisted Injection Molded Disks
指導教授:劉士榮劉士榮引用關係
指導教授(外文):S.J. LIU
學位類別:博士
校院名稱:長庚大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:143
中文關鍵詞:指影現象液體輔助射出成型氣體輔助射出成型
外文關鍵詞:fluid assisted injection moldingfingeringprocessing parameters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
“指影現象”乃為兩不同黏度之流體於互相交會之際,因置換流體其不穩定流動之發生與持續發展,因而在兩流體之交界面上形成如同指頭形狀的流動形貌即稱之。指影現象的發生,對於射出成型件之強度及外貌皆具有嚴重之影響性,惟過去在流體輔助射出成型研究領域中,對於指影現象之探討,皆將研究重點集中於具有肋之薄板件的成型上,對於未具有肋之厚板件其指影現象並未有人加以研究探討。
本研究乃利用流體輔助射出成型技術,來加以探討非等溫過程下非牛頓流體於成型過程中之指影生成現象。研究中乃分別利用氣體輔助射出成型技術與液體輔助射出成型技術來加以成型工件,藉以比較出加工製程技術對於指影生成之影響性。除此之外,本研究亦利用單一參數實驗法,來加以探討製程參數對於指影現象之影響性;而為了探究成型件厚度對於指影現象之影響性,本研究亦分別設計兩種不同成型件厚度,來加以比較其指影現象之形成差異性。而經由本研究所得之結果可知,液體輔助射出成型件之指影現象乃較氣體輔助射出成型件來的更為嚴重,而厚件之指影嚴重程度乃會較薄件來的嚴重,至於影響指影生成之兩個最重要製程參數乃為模具溫度以及融膠短射量。
One of the problems encountered in fluid assisted injection molded parts is the gas or water “fingering” phenomenon, in which gas (water) bubbles penetrate non-uniformly into the core of the parts and form finger-shape branches. Severe fingerings can lead to significant reductions in part stiffness. This study investigated the fingering phenomenon in fluid assisted injection molded disk parts. Experiments were carried out on a reciprocating injection molding machine equipped with gas and water injection units. The material used was virgin polypropylene. A disk cavity with two different thicknesses was used for all experiments. The effects of various processing parameters on the fingering were examined. It was found that the melt short shot size and mold temperature were the principal parameters affecting the formation of part fingerings. In addition, the formation mechanism of part fingerings has also been proposed to better understand the formation of part fingerings. It has been shown that the fluid assisted filling process is an unstable system by nature. Any small perturbation by material viscosity or by temperature gradient can trigger the unbalance of gas (water) penetrations in the parts and result in fingerings.
指導教授推薦書....................................................
口試委員會審定書..................................................授權書...........................................................iii
誌謝.............................................................iv
中文摘要......................................................... v
英文摘要.........................................................vi
目錄............................................................ vii
第一章 導論
1.1 塑膠材料......................................................1
1.2 射出成型技術..................................................3
1.2.1射出成型法之優點...........................................5
1.3 氣體輔助射出成型..............................................6
1.3.1氣體輔助射出成型之原理.....................................6
1.3.2氣體輔助射出成形之優點及缺點...............................9
1.4 液體輔助射出成型.............................................11
1.4.1液體輔助射出成型之原理....................................11
1.4.2液體輔助射出成型之優點....................................13
1.4.3液體輔助射出成型之應用範圍................................14
1.4.4液體輔助射出成型當前遭遇之問題與限制......................15
1.4.5液體輔助射出成型目前發展概況..............................16
1.5 研究動機.....................................................19
1.6 研究目標.....................................................21
1.7 論文架構.....................................................22

第二章 文獻回顧
2.1液體輔助射出成型相關文獻......................................23
2.2氣體輔助射出成型相關文獻......................................26
2.3共射出成型相關文獻............................................29
2.4指影現象相關文獻..............................................31
2.5文獻回顧總結..................................................35

第三章 實驗材料與設備
3.1實驗描述......................................................37
3.2實驗設計......................................................39
3.2.1實驗模具設計製作..................... .....................39
3.2.2實驗材料........ ..........................................43
3.2.3實驗設備及規格.. ..........................................44
3.2.4實驗架設........ ..........................................50
3.5單一參數實驗..................................................51
3.5.1液體輔助射出成型單一參數實驗................ ..............51
3.5.2氣體輔助射出成型單一參數實驗................ ..............53
3.5.3液體輔助射出成型與氣體輔助射出成型之比較.... ..............54
3.6成品量化定義..................................................55
3.7實驗步驟......................................................57

第四章 結果與討論
4.1實驗模具建立..................................................58
4.2製程技術與成品厚度對於指影形貌之影響..........................58
4.3二次滲透現象之比較............................................61
4.4影響指影生成之因素............................................63
4.5單一參數實驗結果............................ .................70
4.5.1不同製程於8mm板件單一參數實驗結果分析... .................70
4.5.2不同製程於10mm板件單一參數實驗結果分析.. .................89
4.5.3不同板件厚度之液輔製程單一參數實驗結果... ................106
4.5.4不同板件厚度之氣輔製程單一參數實驗結果... ................110

第五章 結論與未來研究方向
5.1結論.........................................................115
5.2未來研究方向.................................................116
參考文獻......... ..............................................118




















圖 目 錄
圖1-1 射出成型過程示意圖................................ .........5
圖1-2 氣體輔助射出成型之示意圖..... ..............................7
圖1-3 氣體推動熔膠過程示意圖. ....................................8
圖1-4 液體輔助射出成型示意圖................... .................12
圖1-5 各種液體輔助射出成型方式................. .................13
圖1-6 德國Battenfeld --Aquamold系統............. .................17
圖1-7 全立發公司之水輔設備與產品............... .................17
圖1-8 Aquapress 液輔示意圖.......................................18
圖1-9 兩不互容流體之黏度指影現象. ...............................19
圖3-1 模具尺寸圖......... .......................................40
圖3-2 模具實際圖......... .......................................41
圖3-3 模仁尺寸圖......... .......................................41
圖3-4 成品示意圖......... .......................................42
圖3-5 台中精機Victor-7000/VS-80型射出. .......................44
圖3-6 循環式模溫機.............................................45
圖3-7 烘料機........................ ............................46
圖3-8 氣體輔助射出設備.............. ............................46
圖3-9 氣體輔助射出設備.............. ............................47
圖3-10 水針實際外觀圖.......................................... 49
圖3-11 實驗架設示意圖...................... ....................50
圖3-12 掏空面積差值計算示意圖...... ............................57
圖3-13 整體實驗流程圖...................... ....................58
圖4-1 不同成型技術與成品厚度指影分佈形貌圖.................... 60
圖4-2 二次滲透現象示意圖.................. ....................62
圖4-3 壓力梯度改變示意圖.................. ....................65
圖4-4 8 mm射出板件指影面積差值統計圖(射膠溫度改變) ...........72
圖4-5 8 mm液輔射出板件實際成品圖(射膠溫度改變)................73
圖4-6 8 mm氣輔射出板件實際成品圖(射膠溫度改變)................73
圖4-7 8 mm射出板件指影面積差值統計圖(模具溫度改變)............75
圖4-8 8 mm液輔射出板件實際成品圖(模具溫度改變)................75
圖4-9 8 mm氣輔射出板件實際成品圖(模具溫度改變) ...............76
圖4-10 8 mm射出板件指影面積差值統計圖(短射尺寸改變)............77
圖4-11 8 mm液輔射出板件實際成品圖(短射尺寸改變)................77
圖4-12 8 mm氣輔射出板件實際成品圖(短射尺寸改變)................78
圖4-13 8 mm液輔射出板件指影面積差值統計圖(液體溫度改變)........79
圖4-14 8 mm液輔射出板件實際成品圖(液體溫度改變)................80
圖4-15 8 mm射出板件指影面積差值統計圖(流體壓力改變)............82
圖4-16 8 mm液輔射出板件實際成品圖(水壓改變)....................82
圖4-17 8 mm氣輔射出板件實際成品圖(氣壓改變)....................83
圖4-18 8 mm射出板件指影面積差值統計圖(保壓時間改變)............84
圖4-19 8 mm液輔射出板件實際成品圖(保壓時間改變)................85
圖4-20 8 mm氣輔射出板件實際成品圖(保壓時間改變)................85
圖4-21 8 mm射出板件指影面積差值統計圖(流體進入延遲時間改變)....87
圖4-22 8 mm液輔射出板件實際成品圖(進水延遲時間改變)............87
圖4-23 8 mm氣輔射出板件實際成品圖(進氣延遲時間改變)............88
圖4-24 10mm射出板件指影面積差值統計圖(射膠溫度改變) ...........90
圖4-25 10mm液輔射出板件實際成品圖(射膠溫度改變) ...............91
圖4-26 10mm氣輔射出板件實際成品圖(射膠溫度改變) ...............91
圖4-27 10mm射出板件指影面積差值統計圖(模具溫度改變) ...........93
圖4-28 10mm液輔射出板件實際成品圖(模具溫度改變) ...............93
圖4-29 10mm氣輔射出板件實際成品圖(模具溫度改變) ...............94
圖4-30 10mm射出板件指影面積差值統計圖(短射尺寸改變) ...........95
圖4-31 10mm液輔射出板件實際成品圖(短射尺寸改變) ...............95
圖4-32 10mm氣輔射出板件實際成品圖(短射尺寸改變) ...............96
圖4-33 10mm液輔射出板件指影面積差值統計圖(液體溫度改變) .......97
圖4-34 10mm液輔射出板件實際成品圖(液體溫度改變) ...............98
圖4-35 10mm射出板件指影面積差值統計圖(流體壓力改變) ...........99
圖4-36 10mm液輔射出板件實際成品圖(水壓改變) ..................100
圖4-37 10 mm氣輔射出板件實際成品圖(氣壓改變)..................100
圖4-38 10 mm射出板件指影面積差值統計圖(保壓時間改變)..........102
圖4-39 10 mm液輔射出板件實際成品圖(保壓時間改變)..............102圖4-40 10 mm液輔射出板件實際成品圖(保壓時間改變)..............103
圖4-41 10 mm射出板件指影面積差值統計圖(流體進入延遲時間改變) .104
圖4-42 10 mm液輔射出板件實際成品圖(進水延遲時間改變) .........105
圖4-43 10 mm氣輔射出板件實際成品圖(進水延遲時間改變) .........105圖4-44 8 mm及10 mm液輔射出板件指影面積差值統計圖(射膠溫度改變)
................................ .......................107
圖4-45 8 mm及10mm液輔射出板件指影面積差值統計圖(模具溫度改變)
............................... ........................107
圖4-46 8 mm及10mm液輔射出板件指影面積差值統計圖(短射尺寸改變)
............................... ........................108
圖4-47 8 mm及10mm液輔射出板件指影面積差值統計圖(液體壓力改變)
............................... ........................108
圖4-48 8 mm及10mm液輔射出板件指影面積差值統計圖(液體溫度改變)
............................... ........................109
圖4-49 8 mm及10mm液輔射出板件指影面積差值統計圖(保壓時間改變)
............................... ........................109
圖4-50 8 mm及10mm液輔射出板件指影面積差值統計圖(液體進入延遲時間改變) ....................... ........................110
圖4-51 8 mm及10mm氣輔射出板件指影面積差值統計圖(射膠溫度改變)
............................... ........................111
圖4-52 8 mm及10mm氣輔射出板件指影面積差值統計圖(模具溫度改變)
............................... ........................112
圖4-53 8 mm及10mm氣輔射出板件指影面積差值統計圖(短射尺寸改變)
............................... ........................112
圖4-54 8 mm及10mm氣輔射出板件指影面積差值統計圖(氣體壓力改變)
............................... ........................113
圖4-55 8 mm及10mm氣輔射出板件指影面積差值統計圖(保壓時間改變)
............................... ........................113
圖4-56 8 mm及10mm氣輔射出板件指影面積差值統計圖(氣體進入延遲時
間改變) ................................................114








表 目 錄
表3-1 PP (6331)物理性質表.. ..................................... 43
表3-2 液體輔助射出成型單一參數水準值表.......................... 52
表3-4 氣體輔助射出成型單一參數水準值表.......................... 54
1. 張榮語,《射出成型模具設計(I) (II) (III)》,初版,台北,高立圖書有限公司 ,民國八十四年。
2. 歐陽渭城,《射出成型模具手冊》,初版,台北,全華科技圖書股份有限公司, 民國八十六年八月。
3. 伊保內賢,《實用塑膠學》,初版,台北,全華科技圖書股份有限公司,民國八十二年十二月。
4. 劉士榮,《高分子流變學》,二版,台中,滄海書局,民國九十四年二月。
5. 劉大佼,《高分子加工原理與應用》,初版,台北,國立編譯館,民國八十八年五月。
6. 劉士榮,《塑膠加工學》,初版,台北,洪秀婉出版,民國八十八年八月。
7. 游尚義,〈氣體射出成型新技術〉,高分子工業,頁73~79,民
國八十四年十二月。
8. S.Y. Yang and F.Z. Huang, “Unstable Gas Penetration in Symmetri- cal Rib Channels During Gas-assisted Injection Molding,” Interna- tional Polymer Processing, Vol. 10, pp. 186-187, 1995.
9. S.J. Liu and Y.S. Chen, “The Manufacturing of Thermoplastic Parts by Water Assisted Injection Molding Technology,” Composites Part A : Applied Science and Manufacturing, Vol. 35, No. 2, pp. 171–180, 2004.
10. W. Michaeli, A. Brunswick and M. Gruber, “Step on the Gas with Water Injection : Water-assisted Injection Moulding (WAIM) : An Alternative to Gas Injection ? ,” Kunststoff plast europe, Vol. 89, No. 4 , pp. 20-21, 1999.
11. Aquamold technique from Battenfeld, http://www.sms-k.com/SMS-Einstieg/default.html.
12. Watermelt technique from Engel, http://www.techspan.co.nz/plastics%20machinery/Engel/watermelt.htm
13. Water assisted injection molding with Bayer Polymers, http://www.bayer.com/en/index.php
14. G.M. Homsy, “Viscous fingering in porous media,” Annual Review of Fluid Mechanics, Vol. 19, pp. 271-311, 1987.
15. S.J. Liu and Y.S. Chen, “Water-Assisted Injection Molding of Ther- mo plastic Materials: Effects of Processing Parameters,” Polymer Engineering and Science, Vol 43, No. 11, pp. 1806-1817, 2003.
16. S.J. Liu and Y.C. Wu, “Factors Affecting the Stability of Gas Pene- tration in Gas Assist Injection Molded Bifurcation Parts,” Interna- tional Polymer Processing, Vol. 15, pp. 297-303, 2000.
17. W. Michaeli, A. Brunswick and T. Pohl , “A Comparison of Gas and Water Injection Moulding of Hollow Articles by Fluid-Assisted Injection,” Kunststoff plast europe, Vol. 89, No. 9, pp. 18-20, 1999.
18. S.J. Liu, and W.K. Chen, “Experimental Investigation and Numeri- cal Simulation of the Cooling Process in Water Assisted Injection Molded Parts,” Plastics, Rubber and Composites, Vol. 33, No. 6, pp. 260-266, 2004.
19. W. Michaeli, A. Brunswick and C. Kujat, “Reducing Cooling Time with Water-assisted Injection Moulding : Advantages over Gas assisted Injection,” Kunststoff plast europe, Vol. 90, No. 8, pp. 25-28, 2000.
20. R.Y. Chang, C.T. Huang, W.H. Yang , M.H. Tsai, K. I. Lu and S.J. Liu, “The Investigation of Flow Behavior of Polymeric Melts in the Water Assisted Injection Molding,” SPE-ANTEC Tech. Paper, pp. 575-579, 2004.
21. W. Michaeli, T. Juntgen and A. Brunswick, “WIT-En Route to Series Production: First Industrial Application of the Water Injection Technique,” Kunststoff plast europe, Vol. 91, No. 3, pp. 37-39, 2001.
22. D.H. Kim and K. Oh, “Application of Liquid Gas-Assisted Injection Molding to The X-Arm of a Chair,” SPE-ANTEC Tech. Paper, pp. 3330-3333, 2001.
23. R. Protte and H. Bangert, “Water-Assist Injection Molding – An Innovative Process Technology for Productivity Improvement Developments in Processing, Equipment and Materials,” SPE-ANTEC Tech. Paper, pp. 404-408, 2003.
24. J.S. Lee, S. Cha and F. Lai, “The Effect of Liquid Cooling of Gas Channel in The Gas-Assisted Injection Molding Process: Overview,” SPE-ANTEC Tech. Paper, pp. 759-763, 2001.
25. Y.C. Wu, P.C. Lai and S.J. Liu, “Factors Affecting the Stability of Water Penetration in Symmetrical Rib Channels During Water assisted Injection,” PPS-2004, pp. 44-54, 2004.
26. R. Protte, H. Bangert, C. Cooper and P. Hoeck, “Water-Assist Injection Molding – An Innovative Process Technology for Productivity Improvement Developments in Processing, Equipment and Materials,” SPE-ANTEC Tech. Paper, pp. 404-408, 2003.
27. 林榮騰,水液輔助射出成形結構改良,中華民國專利新型第209965號
28. S.J. Liu and J.H. Chang, “Application of the Taguchi Method to Optimize the Surface Quality of Gas Assist Injection Molded Composites,” Journal of Reinforced Plastics and Composites, Vol. 19, No. 17, pp. 1352-1362, 2000.
29. S.J. Liu, C.Y. Ho, J.H. Chang and S.W. Hung, “ Optimization of the Weldline Strength in Gas-assisted Injection Molded Thermoplastic,” International Polymer Processing, Vol. 16, pp. 1-5, 1999.
30. V. Kapila, N. Schott and S. Shah, “An Experimental Study to Investigate the Influence of Processing Conditions in the Gas-assisted Injection Molding Process,” SPE-ANTEC Tech. Paper, pp. 649-654, 1996.
31. S.J. Liu and I.H. Lin, “ Variations in surface gloss on parts made by gas assisted injection moulding,” Plastics, Rubber and Composites, Vol. 31, No. 1, pp. 28-35, 2002.
32. A.J. Poslinski, P.R. Oehler and V.K. Stokes, “Isothermal unique Gas-Assisted Displacement of Viscoplastic Liquids in Tubes,” Polymer Engineering and Science, Vol. 35, No. 11, pp. 877-892, 1995.
33. S.Y. Yang and F.Z. Huang, “Unstable Gas Penetration in Symmetri- cal Rib Channels During Gas-assisted Injection Molding,” Interna- tional Polymer Processing, Vol. 10, pp. 186-188, 1995.
34. S.J. Liu and C.Y. Chang, ” The influence of processing parameters on thin-wall gas assisted injection molding of thermoplastic materials,” Journal of Reinforced Plastics and Composites, Vol. 22, No. 8, pp. 711-731, 2003.
35. S.H. Parng and S.Y. Yang, “Gas Penetrations in Symmetrical Tapping Ribs during Gas-Assisted Injection Molding,” International Polymer Processing, Vol. 13, pp. 318-32 , 1998.
36. S.C. Chen, K.S. Hsu and J.S. Huang, “Analysis and Experimental Study of Gas Penetration in a Gas-Assisted Injection Molded Spiral Tube,” Journal of Applied Polymer Science, Vol. 58, pp. 793-799, 1995.
37. S.Y. Yang and S.J. Liu, “Development of Moldability Diagrams for Gas-Assisted Injection Molding,” Advances in Polymer Technology, Vol. 14, No. 3, pp. 197-205, 1995.
38. N.S. Ong, H.L. Lee and M.A. Parvez, “Influence of Processing Conditions and Part Design on the Gas-Assisted Injection Molding Process,” Advances in Polymer Technology, Vol. 20, No. 4, pp. 270-280, 2001.
39. M.A. Parvez, N.S. Ong, Y.C. Lam and S.B. Tor, “Gas-assisted injection molding the effect of process variable and gas channel geometry,” Materials Processing Technology, Vol. 121, pp. 27-53, 2002.
40. S.Y. Yang and P.T. Chu, “Void Shape in Gas channel Rib in Gas Assisted Injection molded Plate,” Advance in Polymer Technology, Vol. 18, No. 1, pp. 11-17, 1999.
41. R.D. Chien, S.C. Chen, Y. Kang and H.Y. Yeh, “Effect of Gas Channel Design on Bending Properties of Gas-Assisted Injection Molded Polystyrene Parts,” Journal of Reinforced Plastics and Composites, Vol. 17, No.13, pp. 1213-1230, 1998.
42. R.D. Chien, S.C. Chen, Y. Kang and H.Y. Yeh, “Effect of Gas Channel Design on Bending Properties of Gas-Assisted Injection Molded Polystyrene Parts,” Journal of Reinforced Plastics and Composites, Vol. 17, No.13, pp. 1213-1230, 1998.
43. V. Goodship and K. Kirwan, “Interfacial instabilities in multimaterial co-injection mouldings Part 1 – Background and initial experiments,” Plastics, Rubber and Composites, Vol. 30, No. 1, pp. 11-15, 2001.
44. V. Goodship, K. Kirwan, T. C. Goodhead and G.F. Smith, “Interfacial instabilities in multimaterial co-injection mouldings Part 2 – Interfacial mixing in transparent mouldings,” Plastics, Rubber and Composites , Vol. 32, No. 3, pp. 98-103, 2003.
45. R. Selden, “Co-injection Molding: Effect of Processing on Material Distribution and Mechanical Properties of a Sandwich Molded Plate,” Polymer Engineering and Science, Vol. 40, No.5, pp. 165-1176, 2000.
46. S.C. Chen, K.F. Hsu and J.S. Huang, “Observation of the Polymer Melt Flow in Injection Molding Process Using Co-Injection Molding Technique,” International Communications in Heat and Mass Transfer, Vol. 21, No. 4, pp. 499-508, 1994.
47. D.A. Messaoud and B. Sanchagrin, “Study on Mechanical Properties and Material Distribution of Sandwich Plaques Molded by Co-injection,” Polymer Composites, Vol. 26, No. 3, pp. 265-275, 2005.
48. Mark Parsons and Paul Toyoda, “Co-Injection Molding of PVC With Other Thermoplastics : Processing, Properties, and Applications,” Journal of Vinyl and Additive Technology, Vol. 8, No. 3, pp. 202-208, 2002.
49 F. Ilinca and J.F. Hetu, “Three-dimensional Numerical Molding of co-injection molding,” International Polymer Processing, Vol. 17, No. 3, pp. 265-270, 2002.
50. F. Ilinca, J.F. Hetu and A. Derdouri, “Numerical investigation of the flow front behavior in the co-injection moulding process,” International Journal for Numerical Methods in Fluids, Vol. 50, No. 12, pp. 1445–1460, 2006.
51. S.J. Liu and S.P. Lin, “Parameters Affecting the Formation of Fingerings in Water-Assisted Injection Molded Thermoplastics”, Advances in Polymer Technology, Vol. 25, No. 2, pp. 98-108, 2006.
52. X. Lu, H.H. Chiang, L. Fong, J. Zhao and S.C. Chen, “Study of Gas Fingering Behavior in Gas-assisted Injection Molding,” Polymer Engineering and Science, Vol. 39, No. 1, pp. 62-77, 1999.
53. N. Rakotomalala, D. Salin and P. Watzky, “Fingering in 2D parallel viscous flow,” Journal De Physique II, Vol. 7, No. 7, pp.967-972, 1997.
54. A. Lindner, P. Coussot and D. Bonn, ” Viscous Fingering in a Yield Stress Fluid,” Physical Review Letters, Vol. 85, No. 2, pp. 314-317, 2000.
55. G.M. Homsy, “Viscous Fingering in Porous Media,” Annual Review of Fluid Mechanics, Vol. 19, pp. 271-311, 1987.
56. S.D.R. Wilson, “Taylor-Saffman problem for a non-Newtonian liquid,” Journal of Fluid Mechanics, Vol. 220, pp. 413-425, 1990.
57. I. Brailovsky, A. Babchin, M. Frankel and G. Sivashinsky, “Fingering Instability in Water-Oil Displacement,” Transport in Porous Media, Vol. 63, pp. 363–380, 2006.
58. S. Obernauer, G. Drazer and M. Rosen , “Stable-unstable crossover in non-Newtonian radial Hele-Shaw flow,” Physica A, Vol. 283, pp. 187-192, 2000.
59. J.P. Tian and K.L. Yao, “Immiscible displacements of two-phase non Newtonian fluids in porous media,” Physics Letters A, Vol. 261, PP. 174–178, 1999.
60. G. Pasa, “A New Optimal Growth Constant for the Hele–Shaw Instability,” Transport in Porous Media, Vol. 49, pp. 27–40, 2002.
61. B.K. Singh and J. Azaiez, “Numerical simulation of viscous fingering of shear-thinning fluids,”Canadian Journal of Chemical Engineering, Vol. 79, No. 6, pp. 961-967, 2002.
62. J.D. Chen, “Growth of Radio Viscous Fingers in a Hele-Shaw Cell,” Journal of Fluid Mechanical , Vol. 201, pp. 223-242, 1989.
63. M. Kawaguchi, S. Yamazaki, K. Yonekura, and T. Kato, “Viscous fingering instabilities in an oil in water emulsion,” Physical Fluids, Vol. 16, No. 6, pp. 1908-1914, 2004.
64. D. Bonn, H. Kellary, M.B. Amar and J. Meunier, “Viscous Finger Widening with Surfactant and Polymers,” Physical Review Letter, Vol. 75, No. 11, pp. 2132-2135, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top