(3.239.56.184) 您好!臺灣時間:2021/05/13 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳鴻昌
研究生(外文):Hung Chan Chen
論文名稱:全人工髖關節置換在不同股骨球頭大小與骨質生長狀態於高爾夫擊球負載條件下之有限元素分析
論文名稱(外文):The effects of different head size and bone ingrowth on the total hip arthroplasty during the golf swing - a finite element analysis study
指導教授:林峻立林峻立引用關係
指導教授(外文):C. L. Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:130
中文關鍵詞:股骨球頭骨頭長入扭矩有限元素分析
外文關鍵詞:Femoral HeadBone IngrowthTorqueFinite Element Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
人工髖關節植入後因應力遮蔽效應、骨質退化或固定失敗等因素,導致人工髖關節鬆脫的情形越來越常見,造成人工髖關節鬆脫的原因主要為人工髖關節固定失敗,其中包含股骨柄固定方式、骨柄披覆狀態或股骨球頭選用等因素,且現今醫學的進步,人工關節材料品質的提昇,許多進行過人工關節置換術的患者,也有從事打高爾夫球的運動,然而高爾夫運動擊球過程則會對骨盆產生高扭力,使得股骨柄在股骨內腔將會受到人工髖關節球頭活動之影響。本研究目的欲利用電腦模擬分析規劃不同股骨球頭大小與骨頭長入範圍,並搭配高爾夫擊球負載條件,探討其應用在股骨柄於骨腔中不同狀態時,對人工髖關節系統固定之力學行為。本研究結合醫學影像處理、電腦輔助設計與電腦模擬分析等技術建構出三維股骨及骨盆、人工髖關節與相關元件系統(球頭、人工襯墊與髖臼杯)模型,並針對不同固定模式進行多參數探討,包含兩種股骨柄狀態(懸浮狀態與壓配狀態)、兩種股骨球頭尺寸(小球頭-28mm與大球頭-52mm)、四種骨頭長入狀態(100%、75%、50及25%),並將參數全展開得16組分析模型。結果顯示,股骨柄為壓配狀態且骨頭長入100%情況下,使用大球頭所造成股骨近端皮質骨應力值為8MPa~118MPa之間,鬆質骨應力值為8MPa~40MPa之間,使用小球頭所造成股骨近端皮質骨應力值為8MPa~70MPa之間,鬆質骨應力值為3MPa~23Mpa之間,隨著骨頭長入越少,在皮質骨應力值變化不大,而鬆質骨則有增加的趨勢;股骨柄為懸浮狀態且骨頭長入100%情況下,使用大球頭所造成股骨近端皮質骨應力值為14MPa~141MPa之間,鬆質骨應力值為6MPa~131MPa之間,使用小球頭所造成股骨近端皮質骨應力值為12MPa~75MPa之間,鬆質骨應力值為3MPa~63Mpa之間,隨著骨頭長入越少,在皮質骨應力值變化不大,而鬆質骨則有增加的趨勢。本研究可知在高爾夫擊球負載所產生的力矩環境下,股骨柄為壓配狀態時,選用大球頭容易對股骨內側近端有較大的應力值,因此當骨頭長入75%以上時,能有較好的固定效果;選用小球頭容易對股骨內側近端有較小的應力值,因此當骨頭長入25%以上時,就有較好的固定效果。股骨柄為懸浮狀態時,選用大球頭容易對股骨內側近端有較大的應力值,因此當骨頭長入100%時,能有較好的固定效果;選用小球頭容易對股骨內側近端有較小的應力值,因此當骨頭長入25%以上時,就有較好的固定效果。
Factors such like stress-shielding, osteolysis or fixation failure following total hip arthroplasty that result in loosening of stem are more and more common. Fixation failure of total hip arthroplasty is in the majority among these factors and that usually correspond to the fixation mode of femoral stem, the coating condition of femoral stem and the choice of femoral head. Due to the progress of current medial science and the promotion of the quality of the artificial joint material, patients that underwent total hip arthroplasty can engage in playing golf. However, the high torsion force on the pelvis and on the artificial femoral head during golfing will affect the stability of the femoral stem in the femoral canal. The current study purpose to utilize the computer simulation to analyze the stability and the biomechanical behaviors of the total hip arthroplasty under the loading condition of golf sport using different size of femoral head, different range of bone ingrowth and different size of femoral stem. The three-dimension femur, pelvis, and implants of artificial hip joint (femoral head, insert and acetabular cup) were constructed by the software of medial image process and computer-aid design. The multi-parameters analysis of different fixation modes includes two femoral stem conditions (floating stem and press-fit stem), two kinds of femoral head size (small head (28mm) and large head(52mm)) and four bone ingrowth conditions (100%, 75%, 50%, and 25%). The results reveal that under the condition of press-fit stem and the 100% bone ingrowth, the stress using large head is among 8MPa ~ 118MPa in the cortical bone and among 8MPa ~ 70MPa in the cancellous bone of the proximal femur. On the other hand, the stress using small head is among 8MPa ~ 70MPa in the cortical bone and among 3MPa ~ 23MPa in the cancellous bone of the proximal femur. Under the condition of floating stem and the 100% bone ingrowth, the stress using large head is among 14MPa ~ 141MPa in the cortical bone and among 6MPa ~ 131MPa in the cancellous bone of the proximal femur. On the other hand, the stress using small head is among 12MPa ~ 75MPa in the cortical bone and among 3MPa ~ 63MPa in the cancellous bone of the proximal femur. As the decrease of bone ingrowth (100% to 25%), the change of stress in the cortical bone is not significant but the stress in the cancellous bone has a trend of increase in both femoral stem conditions. In conclusion, under the loading condition of golf sport:the condition of press-fit stem, using the large head to have the big stress easily in the proximal femur, therefore when the bone ingrowth above 75%, can have the good fixed effect, using the small head to have the small stress in the proximal femur, therefore when the bone ingrowth above 25%, can have the good fixed effect. The condition of floating stem, using the large head to have the big stress easily in the proximal femur, therefore when the bone ingrowth is 100%, can have the good fixed effect, using the small head to have the small stress in the proximal femur, therefore when the bone ingrowth above 25%, can have the good fixed effect.
指導教授推薦書
口試委員會審定書
長庚大學博碩士紙本論文著作授權書
誌謝 iii
中文摘要 iv
英文摘要 vi
目錄 viii
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1研究背景 1
1.1.1股骨解剖構造簡介 1
1.1.2人工髖關節置換術 4
1.1.3人工髖關節置換術後之問題 8
1.1.4人工髖關節固定模式 9
1.1.5高爾夫運動對人工髖關節之影響 12
1.1.6有限元素模擬分析 17
1.2研究動機 20
1.3文獻回顧 21
1.4研究目的 25
第二章 材料與方法 26
2.1研究流程概述 26
2.2骨股與骨盆有限元素模型建構 28
2.2.1研究參數設定 28
2.2.2醫學影像處理 34
2.2.3股骨與骨盆模型建構 39
2.2.4人工髖關節系統模型建構 44
2.3人工髖關節系統之電腦模擬分析 51
第三章 研究結果 67
3.1有限元素模型建構 67
3.2電腦模擬分析結果 68
3.2.1股骨遠端之應力結果分析 70
3.2.2股骨近端之應力結果分析 72
第四章 研究討論 93
4.1電腦模擬分析 93
4.2人工髖關節系統之應力模擬分析結果 95
4.3電腦模擬分析研究假設與限制 97
4.4.1基本假設 97
4.4.2負載條件 98
4.4.3非線性模擬分析 98
4.4.4體外模型驗證 99
第五章 研究結論 100
參考文獻 101
附錄A 中文論文文稿
附錄B 研討會論文文稿
[1] Brand RA. Comparison of hip force calculations and measurements in the same patient. J Arthroplasty, 1994; 9: 45–51.
[2] Duda GN. Internal forces and moments in the femur during walking. J Biomech, 1997; 30: 933–941.
[3] Stansfield BW. Hip joint contact forces in normal subjects and subjects with total hip prostheses. Clin Biomech, 2002; 17: 130–139.
[4] Hurwitz DE. A new parametric approach for modeling hip forces during gait. J Biomech, 2003; 36: 113–119.
[5] Stansfield BW. Direct comparison of calculated hip joint contact forces with those measured using instrumented implant. An evaluation of a three-dimensional mathematical model of the lower limb . J Biomech, 2003; 36: 926–936.
[6] Kavanagh BF. Charnly low-friction arthroplasty of the hip. J Arthroplasty, 1994; 9: 229–234.
[7] Kim YH. Cementless porous-coated anatomic medullary locking total hip prostheses. J Arthroplasty, 1994; 9: 243–252.
[8] Mohler CG. Early loosening of the femoral component at the cement-prosthesis interface after total hip replacement. J Bone Joint Surg, 1995; 77A: 1315–1322.
[9] Nancy LC. A photoelastic and strain gauge analysis of angled abutments for an implant system. Int J Oral Maxillofac Implants 1993; 8:541-548.
[10] Sethi A. Evolution of the concept of angulated abutments in implant dentistry: 14-yrars clinical data. Implant Dent 2002; 11:41-51.
[11] Huang HL. Effects of splinted prosthesis supported a wide implant or two implants: a three-dimensional finite element analysis. Clin Oral Implants Res 2005; 16:466-472.
[12] Rangert B. Biomechanics of the Branemark system. Aust Prosthodont J. 1995; 9:39-48.
[13] Noble PC. The Anatomic Basis of Femoral Component Design. J Bone Joint Surg, 1988; 148–165.
[14] Theriault, G. Golf Injuries. An Overview. Sports Med,1998; 26(1): 43-57.
[15] Heather G. Hip rotational velocities during the full golf swing. J Sci Med Sport, 2009; 8: 296-299.
[16] Joseph M. The role of upper torso and pelvis roation in driving performance during the golf swing. J Sports Sci, 2008; 26(2): 181–188.
[17] Daniel JB. Effcet of Femoral Head Diameter and Operative Approach on Risk of Dislocation After Primary Total Hip Arthroplasty. J Bone Joint Surg 2005; 87:2456-2463.
[18] Lachiewicz, PF. Dislocation of primary total hip arthroplasty with 36and 40-mm femoral heads. Clin Orthop Res 2006; 453:153-155.
[19] Daniel K. Influence of femoral head size on impingement dislocation and stress distribution in total hip replacement. Med Eng Phys 2007; 29:465–471.
[20] James PM. Influence of Porous Coating Level on Proximal Femoral Remodelin. Clin Orthop Relat Res 2000; 371, 146-153.
[21] Fernandes PR. A contact model with ingrowth control for bone remodeling around cementless stems. J Biomech, 2002;35:167-176.
[22] Cristofolini L. Mechanical validation of whole bone composite femur models. J Biomech, 1996; 29: 525.
[23] Tanino H. Three-dimensional computer-aided design based design sensitivity analysis and shape optimization of the stem using adaptive p-method. J Biomech, 2006; 39: 1948–1953.
[24] Janssen D. Finite-element analysis of failure of the capital Hip designs. J Bone Joint Surg, 2005; 87-B: 1567-1567.
[25] Jorge C. Computational hip joint simulator for wear and heat generation. J Biomech, 2007;40:2358-2366.
[26] Sitthiseripratip K. Finite element study of trochanteric gamma nail for trochanteric fracture. Med Eng Phys, 2003; 25: 99–106.
[27] Sune H. Subject specific finite element analysis of implant stability for a cementless femoral stem. Clin Biomech, 2009;24:480-487.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔