(18.232.50.137) 您好!臺灣時間:2021/05/07 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊晴媛
研究生(外文):Ching Yuan Yang
論文名稱:利用高解析度溶解曲線分析法快速鑑定臨床常見之分枝桿菌
論文名稱(外文):Rapid Identification of Clinical Mycobacteria by High-resolution Melting Curve Analysis
指導教授:吳竹蘭吳竹蘭引用關係曾慶平
指導教授(外文):T. L. WuC. P. Tseng
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:61
中文關鍵詞:分枝桿菌高解析度溶解曲線分析法
外文關鍵詞:mycobacteriahigh-resolution melting curve analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:785
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統鑑定分枝桿菌的方法既耗時又需要經驗豐富的人員才能正確鑑定,因此,本研究欲利用real-time PCR加上high-resolution melting curve analysis (HRM) 的方式來快速區分臨床上常見的分枝桿菌。首先,將16種臨床常見之分枝桿菌菌種(包括M. tuberculosis (MTB)、 M. asiaticum、M. gordonae、M. kansasii、M. szulgai、 M. avium、M. fortuitum、M. chelonae、M. intracellulare、 M. marinum、 M. terrae、M. xenopi、M. scrofulaceum、M. abscessus、M. haemophilum以及M. triviale)以real-time PCR搭配HRM作分析,再與M. kansasii形成heteroduplex後,以這16種臨床常見分枝桿菌之溶解曲線圖形建立起資料庫。利用blind test的方式測試臨床108株分枝桿菌菌株的DNA,並比對資料庫的正確性。從實驗結果發現,用此法完整建立16種分枝桿菌菌種資料庫,以blind test的方式鑑定臨床菌種共108株分枝桿菌菌株,有91株跟原先鑑定結果一致,正確率為84%。有9株菌株無法判斷其菌種,另有8株與原先鑑定結果不一致,但可用傳統的菌落生長速度以及照光產色的特性來輔助觀察菌種正確性。因此,此方法既快速、不需要probes,花費少,對於臨床上快速區分常見的分枝桿菌提供了一個良好的方法。
The conventional way for mycobacterial species identification usually requires an experienced personal and is time-consuming. In this study, we explored the combined use of real-time PCR and high-resolution melting (HRM) curve analysis for rapid detection and identification of clinically important mycobacterial species. At first, the HRM profiles for sixteen mycobacterial species, including M. tuberculosis (MTB), M. asiaticum, M. gordonae, M. kansasii, M. szulgai, M. avium, M. fortuitum, M. chelonae, M. intracellulare, M. marinum, M. terrae, M. xenopi, M. scrofulaceum, M. abscessus, M. haemophilum and M. triviale, were established using CAP standard mycobacterial isolates. All these 16 species can be identified by the HRM profiles after heteroduplex formation with M. Kansasii. To further extend the clinical application of this method, 108 clinical mycobacterial isolates were subjected to a blind HRM analysis. The results showed that the species of 91 isolates were correctly identified with the accuracy rate equivalent to 84%. Eight of the isolates were not identified correctly, although all of them can be identified by traditional characteristics of growth rate and pigmentation. In addition, 9 isolates can not be identified due to the failure of PCR. Together, this method is rapid and cost-effective without using probe for detection. Hence, the combined use of real-time PCR and high-resolution melting curve analysis offers a good way for rapid identification of clinical mycobacteria in a clinical setting.
指導教授推薦書…………………………………………………………………
口試委員會審定書………………………………………………………………
授權書……………………………………………………………………………. iii
誌謝……………………………………………………………………………… vi
中文摘要…………………………………………………………………………… v
英文摘要…………………………………………………………………………. vi
目錄……………………………………………………………………………... vii
第一章 緒論………………………………………………………………………... 1
1.1 分枝桿菌簡介……………………………………………………...……… 1
1.2 非結核性分枝桿菌簡介…………………………………………...……… 2
1.2.1非結核性分枝桿菌的分類…………………………………………… 2
1.3 傳統上鑑定分枝桿菌的方法…………………………………...………… 3
1.4 分子診斷法……………………………………………………………...… 4
1.5 選用16S rRNA gene當作target的原因…………………………………. 6
1.6 實驗目的……………………………………………………….….….…… 6
第二章 材料與方法………………………………………………………………... 7
2. 1資料庫菌種來源…………………………………………………….……… 7
2.1.1 CAP標準菌種………………………………………………………… 7
2.1.2 臨床菌種……………………………………………………………. 7
2.1.3 Blind test臨床菌株種類及數量…………………………………….. 7
2.2 實驗試劑及儀器…………………………………………………………. 8
2.3 Target gene的選擇……………………………………………………… 9
2.4 Real-time PCR中DNA template的取得………………………………. 10
2.4.1 CAP菌株的real-time PCR template DNA的取得…………………. 10
2.4.2 臨床菌株的real-time PCR template DNA的取得……………….. 10
2.5 Real-time PCR搭配high-resolution melting curve analysis的方法 11
2.5.1 用lightcycler real-time PCR放大16S rRNA gene……………… 11
2.5.2 high-resolution melting curve acquisition and analysis…………… 11
2.5.3 Heteroduplex formation……………………………………………… 12
2.5.4 建立資料庫…………………………………………………...….. 12
2.6 Sequencing analysis for CAP species………………………………….. 12
2.7 Blind test……………………………………………………………….. 13
第三章 實驗結果…………………………………………………………………. 14
3.1選擇16S rRNA gene上適合的target gene…………………….….……… 14
3.2分枝桿菌菌種資料庫的建立……………………………………………... 14
3.3定序以確認資料庫中各分枝桿菌菌種的正確性………………………… 16
3.4臨床分枝桿菌的blind test測試…………………………………..………. 16
第四章 結果討論…………………………………………………………………. 19
參考文獻…………………………………………………………………….……… 22
附圖 ………………………………………………………………………………. 27
圖A 92年到95年林口長庚醫院院內所檢測出結核菌群的比例………… 27
圖B Runyon分群……….…………………………………………………….. 28
圖C 傳統生化試驗………………………………………………………….. 29
圖D 92年到95年林口長庚醫院臨床常見的分枝桿菌菌種……………….. 31
Table 1 臨床常見非典型分枝桿菌的16sRNA target gene的序列分群………. 32
Table 2 Blind test………………………………………………………………... 33
Table 3 臨床分枝桿菌菌株之操作結果與原先鑑定結果……………………. 34
圖一 Target: 16S rRNA gene from 71 to 226bp………………………………… 36
圖二 16種分枝桿菌的melting plot及derivative plot…………………………… 37
圖三 CAP分枝桿菌菌種圖形之資料庫……………………………………. 38
圖四 利用另一個target-ITS來區分M. abscessus及M. chelonae………………. 39
圖五 利用HRM及形成heteroduplex鑑定未知純化菌種之流程圖…………...40
圖六 臨床分枝桿菌菌種圖形之資料庫……………………….………… 41
圖七 Blind test臨床分枝桿菌菌株無法判讀菌種之derivative plot……………42
圖八 Blind test臨床分枝桿菌菌株與結果不一致之derivative plot……………43
圖九 與reference M. kansasii 形成heteroduplex 之blind test臨床菌株……44
圖十 臨床上用HRM及形成heteroduplex快速鑑定未知臨床菌種的流程圖45
圖十一Sequencing for clinical M. gordonae (unknown isolate no. 45) …………..46
附錄 定續結果…………………………………………………………………47
Buijtels, P. C., H. F. Willemse-Erix, P. L. Petit, H. P. Endtz, G. J. Puppels, H. A. Verbrugh, A. van Belkum, D. van Soolingen & K. Maquelin, (2008) Rapid identification of mycobacteria by Raman spectroscopy. J Clin Microbiol 46: 961-965.

D'Amato, R. F., A. A. Wallman, L. H. Hochstein, P. M. Colaninno, M. Scardamaglia, E. Ardila, M. Ghouri, K. Kim, R. C. Patel & A. Miller, (1995) Rapid diagnosis of pulmonary tuberculosis by using Roche AMPLICOR Mycobacterium tuberculosis PCR test. J Clin Microbiol 33: 1832-1834.

Fukushima, M., K. Kakinuma, H. Hayashi, H. Nagai, K. Ito & R. Kawaguchi, (2003) Detection and identification of Mycobacterium species isolates by DNA microarray. J Clin Microbiol 41: 2605-2615.

Griffith, D. E., T. Aksamit, B. A. Brown-Elliott, A. Catanzaro, C. Daley, F. Gordin, S. M. Holland, R. Horsburgh, G. Huitt, M. F. Iademarco, M. Iseman, K. Olivier, S. Ruoss, C. F. von Reyn, R. J. Wallace, Jr. & K. Winthrop, (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175: 367-416.

Hall, L., K. A. Doerr, S. L. Wohlfiel & G. D. Roberts, (2003) Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol 41: 1447-1453.

Lin, J. H., C. P. Tseng, Y. J. Chen, C. Y. Lin, S. S. Chang, H. S. Wu & J. C. Cheng, (2008) Rapid differentiation of influenza A virus subtypes and genetic screening for virus variants by high-resolution melting analysis. J Clin Microbiol 46: 1090-1097.

Odell, I. D., J. L. Cloud, M. Seipp & C. T. Wittwer, (2005) Rapid species identification within the Mycobacterium chelonae-abscessus group by high-resolution melting analysis of hsp65 PCR products. Am J Clin Pathol 123: 96-101.

Pao, C. C., T. S. Yen, J. B. You, J. S. Maa, E. H. Fiss & C. H. Chang, (1990) Detection and identification of Mycobacterium tuberculosis by DNA amplification. J Clin Microbiol 28: 1877-1880.

Parrish, S. C., J. Myers & A. Lazarus, (2008) Nontuberculous mycobacterial pulmonary infections in Non-HIV patients. Postgrad Med 120: 78-86.

Patel, J. B., D. G. Leonard, X. Pan, J. M. Musser, R. E. Berman & I. Nachamkin, (2000) Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA bacterial identification system. J Clin Microbiol 38: 246-251.

Ringuet, H., C. Akoua-Koffi, S. Honore, A. Varnerot, V. Vincent, P. Berche, J. L. Gaillard & C. Pierre-Audigier, (1999) hsp65 sequencing for identification of rapidly growing mycobacteria. J Clin Microbiol 37: 852-857.
Rogall, T., T. Flohr & E. C. Bottger, (1990) Differentiation of Mycobacterium species by direct sequencing of amplified DNA. J Gen Microbiol 136: 1915-1920.

Roth, A., U. Reischl, A. Streubel, L. Naumann, R. M. Kroppenstedt, M. Habicht, M. Fischer & H. Mauch, (2000) Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. J Clin Microbiol 38: 1094-1104.

Senna, S. G., J. Battilana, J. C. Costa, M. G. Silva, R. S. Duarte, L. S. Fonseca, P. N. Suffys & M. R. Bogo, (2008) Sequencing of hsp65 gene for identification of Mycobacterium species isolated from environmental and clinical sources in Rio de Janeiro, Brazil. J Clin Microbiol 46: 3822-3825.

Shin, J. H., H. K. Lee, E. J. Cho, J. Y. Yu & Y. H. Kang, (2008) Targeting the rpoB gene using nested PCR-restriction fragment length polymorphism for identification of nontuberculous mycobacteria in hospital tap water. J Microbiol 46: 608-614.

Shrestha, N. K., M. J. Tuohy, G. S. Hall, U. Reischl, S. M. Gordon & G. W. Procop, (2003) Detection and differentiation of Mycobacterium tuberculosis and nontuberculous mycobacterial isolates by real-time PCR. J Clin Microbiol 41: 5121-5126.

Soini, H. & J. M. Musser, (2001) Molecular diagnosis of mycobacteria. Clin Chem 47: 809-814.
Taylor, T. B., C. Patterson, Y. Hale & W. W. Safranek, (1997) Routine use of PCR-restriction fragment length polymorphism analysis for identification of mycobacteria growing in liquid media. J Clin Microbiol 35: 79-85.

Telenti, A., F. Marchesi, M. Balz, F. Bally, E. C. Bottger & T. Bodmer, (1993) Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31: 175-178.

Wittwer, C. T., G. H. Reed, C. N. Gundry, J. G. Vandersteen & R. J. Pryor, (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49: 853-860.
Yamada-Noda, M., K. Ohkusu, H. Hata, M. M. Shah, P. H. Nhung, X. S. Sun, M. Hayashi & T. Ezaki, (2007) Mycobacterium species identification--a new approach via dnaJ gene sequencing. Syst Appl Microbiol 30: 453-462.

Yan, L. X., J. Ju, B. W. Chen, B. D. Zhu & G. Z. Wang, (2008) [Analysis of the genotype of intraspecies of common Mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences]. Zhonghua Jie He He Hu Xi Za Zhi 31: 436-441.

(1997) Diagnosis and treatment of disease caused by nontuberculous mycobacteria. This official statement of the American Thoracic Society was approved by the Board of Directors, March 1997. Medical Section of the American Lung Association. Am J Respir Crit Care Med 156: S1-25.

Connie R. Mahon, George Manuselis, Jr. Diagnostic microbiology 1995
林碧芬、吳竹蘭、彭建芳、薛博仁、蔡文城 鄧麗珍、蘇維鈞,《結核菌檢驗手冊》,出版年月:中華民國九十三年三月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔