跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張志榮
研究生(外文):Chih Jung Chang
論文名稱:細菌代謝物2,3-丁二醇抑制肝癌形成且活化自然殺手細胞
論文名稱(外文):The bacterial metabolite 2,3-butanediol prevents hepatocellular carcinoma and activates natural killer cells
指導教授:賴信志賴信志引用關係
指導教授(外文):H. C. Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:53
中文關鍵詞:自然殺手細胞肝癌23-丁二醇
外文關鍵詞:Natural killer cellsHepatocellular carcinoma23-butanediol
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2,3-butanediol(2,3-BTD) 是許多細菌從丙酮酸代謝生成的產物。其具有許多生理功能,包含當細菌生長密度太高時扮演調控環境pH值的角色、促進阿拉伯芥的生長和誘導防禦病原菌感染系統的啟動、改善內毒素所誘導的急性肺損傷及抗發炎的效果等。在人體2,3-BTD可因飲酒而產生。因過度攝取酒精是肝癌形成的原因之一,所以我們想探討2,3-BTD是否具有預防肝癌的效果。本研究中,利用化學藥劑所誘導老鼠肝癌模式中,發現2,3-BTD會顯著的改善肝癌病理外觀,並且降低肝臟珈瑪麩胺酸酵素(Gamma-GT)含量,另外也會促進脾臟自然殺手細胞的活性。之前研究顯示,自然殺手細胞對於肝癌的抑制扮演重要的角色,並且與細胞上的活化接受器有關,所以我們利用自然殺手細胞的細胞株NK-92試圖瞭解其被活化的機制。結果發現隨著2,3-BTD濃度提高,導致自然殺手細胞表面上的活化接受器表現亦隨之提高。此外下游的傳遞路徑MAPK及毒殺分子perforin的表現也隨著活化,結果導致自然殺手細胞的毒殺細胞效率提高。2,3-BTD或許是一個預防或治療肝癌的可能化合物。
The compound 2,3-butanediol (2,3-BTD) synthesized in a variety of bacterial species is a metabolite derived from pyruvate. It shows multiple physiological functions, including regulating pH value when bacteria grow to a high cell density, plant systemic resistance against bacterial infection, promoting plant growth, and ameliorating endotoxin-induced acute lung injury in rats. Whether 2,3-BTD shows any effect on anti-tumorigenesis remains unknown. As 2,3-BTD is also synthesized in humans after alcohol uptake and alcoholism is closely related to hepatocellular cancinoma (HCC) formation, in this study, we set out to study whether 2,3-BTD prevents formation of HCC in rats and promotes activity of splenic cytotoxic cells. Results indicated that 2,3-BTD ameliorates chemical-induced HCC formation and activates NK cells activity. The activation mechanism of NK cells is further identified to be mainly through activation of NKG2D and NCR (except NKp30) receptors, and the mitogen-activated protein kinase (MAPK) signaling pathways, especially the JNK and ERK pathway. This subsequently leads to increased expression of perforin and NK cells cytotoxicity. The 2,3-BTD thus shows a potential of being used as an agent in prevention of HCC formation.
指導教授推薦書
口試委員會審定
授權…………………………………………………………………….iii
誌謝………..……………………………………………………………iv
中文摘要.……..………………………………………...........................v
ABSTRACT…...…………………………………...…...........................vi
TABLE OF CONTENTS……,,,,……..…………………..………….…vii
FIGURE AND TABLE CONTENTS……………..……………….........ix
CHAPTER 1 Introduction……………………………………….….….1
1.1 The physiological roles of 2,3-butanediol ………………………..….1
1.2 Hepatocellular carcinoma …………………………………………....1
1.3 Natural killer cells and HCC ………………………………….….….2
1.4 NK cells physiology……………………………………………….…3
1.4.1 Activation and inhibitory receptors of NK cells…………….….3
1.4.2 Signalings and NK cells cytotoxicity…………………………...5
1.4.3 Cytotoxic proteins of NK cells……………………………….…5
1.5 Specific Aims ……………………………………………………..…..6
CHAPTER 2 Materials and Methods…………………………………....7
2.1 Chemical reagents…………………………………………………......7
2.2 HCC rat model …………………………………………………….......7
2.3 Histological examinations ……………………………………….........7
2.4 Analysis of gamma-glutamyl transpeptidase (γ-GT) activity
in liver tissue Sections ……………...…………………………………..…7
2.5 Cell lines and cell culture…………………...………………….….…..8
2.6 Cytotoxicity assay ………………………………………...…….….…8
2.7 RNA extraction and reverse transcription PCR………………………9
2.8 Western blot analysis………………….…………………………….10
CHAPTER 3 Results ………………….…………………………….12
3.1 2,3-BTD prevents HCC formation ………………………………….12
322,3-BTD ameliorates histopathology in experimental
Hepatotumorigenesis…………………………………………….…...12
3.3 2,3-BTD decreases γ-GT activity in liver………………………….....13
3.4 2,3-BTD increases spleen NK cell activities in HCC rats………..…..13
3.5 2,3-BTD activates NK cells activity in vitro……………………..…..13
3.6 2,3-BTD upregulates transcriptional and translation level of NKG2D,
NKp44, NKp46, and perforin…………..…………..…………….14
3.7 2,3-BTD increases phosphorylation of MAPK signaling JNK and ERK
Pathways …………………………………………….…………...…14
CHAPTER 4 Discussion…………………..…………………...………....16
CHAPTER 5 References…………………………………………..……..32
Appendix …………………………………………………………...…….38

FIGURE AND TABLE CONTENTS
Table1 The DNA sequences of primer pairs used in PCR in this study..19
Fig. 1. The signaling pathways from NCRs, CD16 and NKG2D,
through adaptors to MAPKs and virulence protreins in NK cells……..…20
Fig 2. Schematic diagram of the experimental design for induction of
hepatocellular carcinoma…………………………..………………..……21
Fig 3. 2,3-BTD recover DEN/2-AAF/PH induced HCC
formation in rats ……..……………………………………………...……22
Fig 4. Effect of 2,3-BTD on histolopathology change of liver tumors…23
Fig 5. Effect of 2,3-BTD on liver inflammation. This was expressed as γ-GT positive lesion area in liver tumors…………..………………......…24
Fig 6. 2,3-BTD activates spleen NK cells activity in vivo………..….....25
Fig 7A. In vitro activation of NK cells activity by 2,3-BTD………...…26
Fig 7B. Dose-dependent activation of 2,3-BTD on NK cells was
inhibited by JNK inhibitor, SP600125(SP)………………………..……...27
Fig 8A. 2,3-BTD increases mRNA expression of activation receptors and granule proteins in NK cells…….…………………………………..…....28
Fig 8B. 2,3-BTD increases protein expression of activation receptors and cytolytic protein…………………………………………………..……....29
Fig 9A. 2,3-BTD increases phosphorylation of MAPK ERK and JNK
signaling pathways signaling in NK cells…………………………...…....30
Fig 9B. JNK inhibitor, SP600125(SP), suppressed phosphorylation of
JNK signaling pathways signaling in present different concentration of
2,3-BTD in NK cells………………………………………………...……31
1.Syu MJ: Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 2001, 55:10-18.
2.Kovacikova G, Lin W, Skorupski K: Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol 2005, 57:420-433.
3.Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW: Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 2003, 100:4927-4932.
4.Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW: Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 2004, 134:1017-1026.
5.Hsieh SC, Lu CC, Horng YT, Soo PC, Chang YL, Tsai YH, Lin CS, Lai HC: The bacterial metabolite 2,3-butanediol ameliorates endotoxin-induced acute lung injury in rats. Microbes Infect 2007, 9:1402-1409.
6.Montgomery JA, David F, Garneau M, Brunengraber H: Metabolism of 2,3-butanediol stereoisomers in the perfused rat liver. J Biol Chem 1993, 268:20185-20190.
7.Llovet JM, Burroughs A, Bruix J: Hepatocellular carcinoma. Lancet 2003, 362:1907-1917.
8.El-Serag HB, Rudolph KL: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007, 132:2557-2576.
9.Blum HE: Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol 2005, 11:7391-7400.
10.Llovet JM, Bruix J: Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology 2003, 37:429-442.
11.Bruix J: Treatment of hepatocellular carcinoma. Hepatology 1997, 25:259-262.
12.Butterfield LH, Ribas A: Immunotherapy of hepatocellular carcinoma. Expert Opin Biol Ther 2002, 2:123-133.
13.Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T: Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 2000, 356:802-807.
14.Olioso P, Giancola R, Di Riti M, Contento A, Accorsi P, Iacone A: Immunotherapy with cytokine induced killer cells in solid and hematopoietic tumours: a pilot clinical trial. Hematol Oncol 2009.
15.Yamagiwa S, Kamimura H, Ichida T: Natural killer cell receptors and their ligands in liver diseases. Med Mol Morphol 2009, 42:1-8.
16.Kim HR, Park HJ, Park JH, Kim SJ, Kim K, Kim J: Characteristics of the killing mechanism of human natural killer cells against hepatocellular carcinoma cell lines HepG2 and Hep3B. Cancer Immunol Immunother 2004, 53:461-470.
17.Miyagi T, Takehara T, Tatsumi T, Kanto T, Suzuki T, Jinushi M, Sugimoto Y, Sasaki Y, Hori M, Hayashi N: CD1d-mediated stimulation of natural killer T cells selectively activates hepatic natural killer cells to eliminate experimentally disseminated hepatoma cells in murine liver. Int J Cancer 2003, 106:81-89.
18.Jinushi M, Takehara T, Tatsumi T, Kanto T, Groh V, Spies T, Kimura R, Miyagi T, Mochizuki K, Sasaki Y, Hayashi N: Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 2003, 104:354-361.
19.Chuang WL, Liu HW, Chang WY: Natural killer cell activity in patients with hepatocellular carcinoma relative to early development and tumor invasion. Cancer 1990, 65:926-930.
20.Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, Shi M, Zhang H, Yang Y, Wu H, et al: Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol 2008, 129:428-437.
21.Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A: Surface NK receptors and their ligands on tumor cells. Semin Immunol 2006, 18:151-158.
22.Kiessling R, Petranyi G, Klein G, Wigzel H: Genetic variation of in vitro cytolytic activity and in vivo rejection potential of non-immunized semi-syngeneic mice against a mouse lymphoma line. Int J Cancer 1975, 15:933-940.
23.Strowig T, Brilot F, Munz C: Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J Immunol 2008, 180:7785-7791.
24.Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J: CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 2009, 126:458-465.
25.Cooper MA, Fehniger TA, Caligiuri MA: The biology of human natural killer-cell subsets. Trends Immunol 2001, 22:633-640.
26.Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA: Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001, 97:3146-3151.
27.Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S: Functions of natural killer cells. Nat Immunol 2008, 9:503-510.
28.Pessino A, Sivori S, Bottino C, Malaspina A, Morelli L, Moretta L, Biassoni R, Moretta A: Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med 1998, 188:953-960.
29.Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A: p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 1997, 186:1129-1136.
30.Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, et al: Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 1999, 190:1505-1516.
31.Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, Augugliaro R, Moretta L, Moretta A: NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 1998, 187:2065-2072.
32.Cantoni C, Bottino C, Vitale M, Pessino A, Augugliaro R, Malaspina A, Parolini S, Moretta L, Moretta A, Biassoni R: NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J Exp Med 1999, 189:787-796.
33.Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y: NKG2D function protects the host from tumor initiation. J Exp Med 2005, 202:583-588.
34.Coudert JD, Held W: The role of the NKG2D receptor for tumor immunity. Semin Cancer Biol 2006, 16:333-343.
35.Deniz G, Erten G, Kucuksezer UC, Kocacik D, Karagiannidis C, Aktas E, Akdis CA, Akdis M: Regulatory NK cells suppress antigen-specific T cell responses. J Immunol 2008, 180:850-857.
36.Lanier LL, Phillips JH: Natural killer cells. Curr Opin Immunol 1992, 4:38-42.
37.Maroof A, Beattie L, Zubairi S, Svensson M, Stager S, Kaye PM: Posttranscriptional regulation of II10 gene expression allows natural killer cells to express immunoregulatory function. Immunity 2008, 29:295-305.
38.Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G: Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 1998, 161:5821-5824.
39.Brill KJ, Li Q, Larkin R, Canaday DH, Kaplan DR, Boom WH, Silver RF: Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule-independent mechanisms. Infect Immun 2001, 69:1755-1765.
40.Hayakawa Y, Kelly JM, Westwood JA, Darcy PK, Diefenbach A, Raulet D, Smyth MJ: Cutting edge: tumor rejection mediated by NKG2D receptor-ligand interaction is dependent upon perforin. J Immunol 2002, 169:5377-5381.
41.Jinushi M, Takehara T, Kanto T, Tatsumi T, Groh V, Spies T, Miyagi T, Suzuki T, Sasaki Y, Hayashi N: Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J Immunol 2003, 170:1249-1256.
42.Trinchieri G: Biology of natural killer cells. Adv Immunol 1989, 47:187-376.
43.Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T: Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999, 285:727-729.
44.Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM: Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 2002, 169:4079-4083.
45.Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R, Kubin M, Cosman D, Ferrone S, Moretta L, Moretta A: Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 2002, 62:6178-6186.
46.Bottino C, Moretta L, Pende D, Vitale M, Moretta A: Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Mol Immunol 2004, 41:569-575.
47.Ting AT, Dick CJ, Schoon RA, Karnitz LM, Abraham RT, Leibson PJ: Interaction between lck and syk family tyrosine kinases in Fc gamma receptor-initiated activation of natural killer cells. J Biol Chem 1995, 270:16415-16421.
48.Salcedo TW, Kurosaki T, Kanakaraj P, Ravetch JV, Perussia B: Physical and functional association of p56lck with Fc gamma RIIIA (CD16) in natural killer cells. J Exp Med 1993, 177:1475-1480.
49.Brumbaugh KM, Binstadt BA, Billadeau DD, Schoon RA, Dick CJ, Ten RM, Leibson PJ: Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity. J Exp Med 1997, 186:1965-1974.
50.Cone JC, Lu Y, Trevillyan JM, Bjorndahl JM, Phillips CA: Association of the p56lck protein tyrosine kinase with the Fc gamma RIIIA/CD16 complex in human natural killer cells. Eur J Immunol 1993, 23:2488-2497.
51.Upshaw JL, Leibson PJ: NKG2D-mediated activation of cytotoxic lymphocytes: unique signaling pathways and distinct functional outcomes. Semin Immunol 2006, 18:167-175.
52.Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH: An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999, 285:730-732.
53.Moretta L, Moretta A: Killer immunoglobulin-like receptors. Curr Opin Immunol 2004, 16:626-633.
54.Lanier LL: Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 2008, 9:495-502.
55.Long EO, Burshtyn DN, Clark WP, Peruzzi M, Rajagopalan S, Rojo S, Wagtmann N, Winter CC: Killer cell inhibitory receptors: diversity, specificity, and function. Immunol Rev 1997, 155:135-144.
56.Wei S, Gamero AM, Liu JH, Daulton AA, Valkov NI, Trapani JA, Larner AC, Weber MJ, Djeu JY: Control of lytic function by mitogen-activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line: identification of perforin and granzyme B mobilization by functional ERK2. J Exp Med 1998, 187:1753-1765.
57.Li C, Ge B, Nicotra M, Stern JN, Kopcow HD, Chen X, Strominger JL: JNK MAP kinase activation is required for MTOC and granule polarization in NKG2D-mediated NK cell cytotoxicity. Proc Natl Acad Sci U S A 2008, 105:3017-3022.
58.Trotta R, Fettucciari K, Azzoni L, Abebe B, Puorro KA, Eisenlohr LC, Perussia B: Differential role of p38 and c-Jun N-terminal kinase 1 mitogen-activated protein kinases in NK cell cytotoxicity. J Immunol 2000, 165:1782-1789.
59.Sutherland CL, Chalupny NJ, Schooley K, VandenBos T, Kubin M, Cosman D: UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol 2002, 168:671-679.
60.Awasthi A, Samarakoon A, Dai X, Wen R, Wang D, Malarkannan S: Deletion of PI3K-p85alpha gene impairs lineage commitment, terminal maturation, cytokine generation and cytotoxicity of NK cells. Genes Immun 2008, 9:522-535.
61.Upshaw JL, Arneson LN, Schoon RA, Dick CJ, Billadeau DD, Leibson PJ: NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells. Nat Immunol 2006, 7:524-532.
62.Chen X, Trivedi PP, Ge B, Krzewski K, Strominger JL: Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci U S A 2007, 104:6329-6334.
63.Vivier E, Nunes JA, Vely F: Natural killer cell signaling pathways. Science 2004, 306:1517-1519.
64.Graham DB, Cella M, Giurisato E, Fujikawa K, Miletic AV, Kloeppel T, Brim K, Takai T, Shaw AS, Colonna M, Swat W: Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics. J Immunol 2006, 177:2349-2355.
65.Billadeau DD, Brumbaugh KM, Dick CJ, Schoon RA, Bustelo XR, Leibson PJ: The Vav-Rac1 pathway in cytotoxic lymphocytes regulates the generation of cell-mediated killing. J Exp Med 1998, 188:549-559.
66.Tassi I, Presti R, Kim S, Yokoyama WM, Gilfillan S, Colonna M: Phospholipase C-gamma 2 is a critical signaling mediator for murine NK cell activating receptors. J Immunol 2005, 175:749-754.
67.Clayberger C, Krensky AM: Granulysin. Curr Opin Immunol 2003, 15:560-565.
68.Trapani JA, Smyth MJ: Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002, 2:735-747.
69.Shi L, Kraut RP, Aebersold R, Greenberg AH: A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med 1992, 175:553-566.
70.Voskoboinik I, Smyth MJ, Trapani JA: Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 2006, 6:940-952.
71.Rozengurt E, Po CC: Selective cytotoxicity for transformed 3T3 cells. Nature 1976, 261:701-702.
72.Lu CC, Lai HC, Hsieh SC, Chen JK: Resveratrol ameliorates Serratia marcescens-induced acute pneumonia in rats. J Leukoc Biol 2008, 83:1028-1037.
73.Tsutsumi M, Sakamuro D, Takada A, Zang SC, Furukawa T, Taniguchi N: Detection of a unique gamma-glutamyl transpeptidase messenger RNA species closely related to the development of hepatocellular carcinoma in humans: a new candidate for early diagnosis of hepatocellular carcinoma. Hepatology 1996, 23:1093-1097.
74.Malorni W, Quaranta MG, Straface E, Falzano L, Fabbri A, Viora M, Fiorentini C: The Rac-activating toxin cytotoxic necrotizing factor 1 oversees NK cell-mediated activity by regulating the actin/microtubule interplay. J Immunol 2003, 171:4195-4202.
75.Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, Kaiser S, Jobst J, Smirnow I, Wagner A, et al: Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 2005, 65:6321-6329.
76.Elinav E, Abd-Elnabi A, Pappo O, Bernstein I, Klein A, Engelhardt D, Rabbani E, Ilan Y: Suppression of hepatocellular carcinoma growth in mice via leptin, is associated with inhibition of tumor cell growth and natural killer cell activation. J Hepatol 2006, 44:529-536.
77.Huntington ND, Vosshenrich CA, Di Santo JP: Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 2007, 7:703-714.
78.Krensky AM, Clayberger C: Granulysin: a novel host defense molecule. Am J Transplant 2005, 5:1789-1792.
79.Bryceson YT, March ME, Ljunggren HG, Long EO: Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 2006, 107:159-166.
80.Bernard K, Cambiaggi A, Guia S, Bertucci F, Granjeaud S, Tagett R, N'Guyen C, Jordan BR, Vivier E: Engagement of natural cytotoxicity programs regulates AP-1 expression in the NKL human NK cell line. J Immunol 1999, 162:4062-4068.
81.Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell 2000, 103:239-252.
82.Song H, Hur DY, Kim KE, Park H, Kim T, Kim CW, Bang S, Cho DH: IL-2/IL-18 prevent the down-modulation of NKG2D by TGF-beta in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Cell Immunol 2006, 242:39-45.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊