(3.238.173.209) 您好!臺灣時間:2021/05/12 13:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林欣如
研究生(外文):Sing Ru Lin
論文名稱:G6PD活性對於TNF-alpha所誘導訊息傳遞的影響
論文名稱(外文):G6PD-status affects TNF-α-induced signal transduction in lung carcinoma (A549) cells
指導教授:趙崇義趙崇義引用關係楊春茂楊春茂引用關係
指導教授(外文):P. T. Y. ChiuC. M. Yang
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:58
中文關鍵詞:TNF-alphaG6PDCOX-2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:270
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
葡萄糖六磷酸去氫酶(Glucose-6-phosphate dehydrogenase, G6PD)最主要的功能就是產生NADPH,進而維持細胞內氧化還原的平衡。當細胞遭受病原體感染時,會釋放出TNF-α等細胞激素,而TNF-α所誘導的訊息傳遞路徑會透過NF-κB及MAPK pathway來產生發炎相關蛋白質COX-2,進而調控細胞功能。目前TNF-α所誘導訊息傳遞路徑已建立,然而G6PD缺乏所造成氧化還原不平衡是如何影響TNF-α所誘導之訊息傳遞並不清楚,故本實驗室以G6PD knockdown的A549細胞株,作為氧化還原狀態不平衡的細胞模式,並進一步探討G6PD缺乏的細胞對TNF-α誘導之訊息傳遞路徑所造成的影響。本實驗室目前研究發現G6PD-knockdown的A549細胞與對照組相比,因缺乏NADPH,在TNF-α處理後,經由NADPH oxidase所產生的superoxide亦低於對照組。進一步追蹤下游MAPK訊息路徑,發現G6PD-knockdown A549其phospho-p38, ERK, JNK磷酸化的量都明顯減少,而發炎相關蛋白質COX-2的表現時間有明顯延遲的現象。COX-2蛋白質延遲及p38磷酸化減少的現象皆在處理apocynin的對照組細胞中亦可以觀察到相似的結果。故本實驗室推測TNF-α誘發的訊息傳遞路徑,例如MAPK及COX-2的表現,會受細胞內還原/氧化狀況所影響。
Glucose-6-phosphate dehydrogenase (G6PD) , the key regulatory enzyme in the pentose phosphate pathway, provides reducing power to all cells in the form of NADPH to meet the cellular needs for reductive biosynthesis and maintenance of the cellular redox status. We have previously reported that G6PD-deficient cells suffer high oxidative stress and more recently, we have found that these cells are more susceptible to viral infection than normal counter parts. However, how G6PD deficiency may affect cellualr signaling remains elusive. Toward this end, we used G6PD-knockdown lung carcinoma cells (A549) as cell model to investigate the effects of cellular redox status on TNF-α signaling pathway. We found that G6PD-knockdown cells produced less superoxide upon 15 ng/ml TNF-α treatment at early stage than that produced by normal cells. In addition, G6PD-knockdown A549 cells showed less phosphorylation of p38, ERK and JNK proteins comparing to control cells. By using western blotting technique, we observed a delayed pattern of inflammatory protein Cox-2 expression upon TNF-α treatment at different time course in G6PD-knockdown A549 cells comparing to control cells. Furthermore, similar delayed Cox-2 expression pattern in control cells was observed by apocynin pretreatment. Taken together, these data support the notion that cellular redox status in host cells is an important factor in TNF-α signal transduction, and may have implications in tumor biology and cancer therapy.
目錄

指導教授推薦書
論文口試委員會審定書
長庚大學授權書------iii
誌謝 ------ iv
中文摘要------ v
英文摘要 ------ vi
目錄 ------ vii
圖表目錄 ------ viii
前言 ------ 1
實驗設計 ------ 6
實驗材料 ------ 7
實驗方法------ 9
實驗結果 ------ 14
討論 ------ 20
參考文獻------ 29


圖表目錄

圖一、G6PD-knockdown A549 cell 其G6PD活性及蛋白質表現量與NADPH含量皆顯著比對照組A549來得少------------------------------36
圖二、G6PD-knockdown A549 cell 與對照組A549的TNFR1的表現量並無明顯差異------------------------------------------------38
圖三、G6PD活性不同的A549細胞在TNF-α處理後,superoxide的產生量變化-----------------------------------------------------39
圖四 、 G6PD活性不同的A549細胞在TNF-α處理不同時間點後,p-P38, ERK, JNK的磷酸化變化-------------------------------------40
圖五、G6PD活性不同的A549細胞在TNF-α處理不同時間點後,COX-2的表現量變化-----------------------------------------------------42
圖六、G6PD活性不同的A549細胞在TNF-α處理不同時間點後,加入p-P38 inhibitor(SB2030580)後,COX-2表現量變化-------------------43
圖七、G6PD活性不同的A549細胞在TNF-α處理不同時間點後,加入MEK1/2 inhibitor(PD98059)後,COX-2表現量變化---------------------44
圖八、對照組A549細胞處理apocynin與TNF-α後,superoxide的產生量變化--------------------------------------------------------45
圖九、對照組A549細胞處理apocynin與TNF-α後,p38 MAPK的磷酸化變化-----------------------------------------------------------46
圖十、對照組A549細胞在TNF-α處理後,COX-2的產生量變化----------------------------------------------------------------------47
圖十一、G6PD-knockdown細胞中TNF-α 所誘導的訊息傳遞路徑--------------------------------------------------------------------48
1. Frank JE. Diagnosis and management of G6PD deficiency.
Am Fam Physician 2005;72:1277-82
2. Tanphaichitr VS, Pung-amritt P, Yodthong S, Soongswang
J,Mahasandana C and Suvatte V. Glucose-6-phosphate
dehydrogenase deficiency in the newborn: its prevalence
and relation to neonatal jaundice. Southeast Asian J
Trop Med Public Health 1995;26 Suppl 1:137-41
3. Brandt O, Rieger A, Geusau A and Stingl G. Peas, beans,
and the Pythagorean theorem - the relevance of glucose-6-
phosphate dehydrogenase deficiency in dermatology. J
Dtsch Dermatol Ges 2008;6:534-9
4. Cappellini MD, Fiorelli G. Glucose-6-phosphate
dehydrogenase deficiency. Lancet 2008;371:64-74
5. Fialkow L, Wang Y and Downey GP. Reactive oxygen and
nitrogen species as signaling molecules regulating
neutrophil function. Free Radic Biol Med 2007;42:153-64
6. Ho HY, Cheng ML and Chiu DT. Glucose-6-phosphate
dehydrogenase--from oxidative stress to cellular
functions and degenerative diseases. Redox Rep
2007;12:109-18
7. Gao LP, Cheng ML, Chou HJ, Yang YH, Ho HY and Chiu DT.
Ineffective GSH regeneration enhances G6PD-knockdown Hep
G2 cell sensitivity to diamide-induced oxidative damage.
Free Radic Biol Med 2009;47:529-35
8. Nikolaidis MG, Jamurtas AZ, Paschalis V, et al. Exercise-
induced oxidative stress in G6PD-deficient individuals.
Med Sci Sports Exerc 2006;38:1443-50
9. Heistad DD, Wakisaka Y, Miller J, Chu Y and Pena-Silva
R. Novel Aspects of Oxidative Stress in Cardiovascular
Diseases. Circ J 2008;73:201-207
10. Cheng ML, Ho HY, Wu YH and Chiu DT. Glucose-6-phosphate
dehydrogenase-deficient cells show an increased
propensity for oxidant-induced senescence. Free Radic
Biol Med 2004;36:580-91
11. Wu YH, Cheng ML, Ho HY, Chiu DT and Wang TC. Telomerase
prevents accelerated senescence in glucose-6-phosphate
dehydrogenase(G6PD)-deficient human fibroblasts. J
Biomed Sci 2009;16:18
12. Ho HY, Cheng ML, Weng SF, et al. Glucose-6-phosphate
dehydrogenase deficiency enhances enterovirus 71
infection. J Gen Virol 2008;89:2080-9
13. Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR and Chiu DT.
Glucose-6-phosphate dehydrogenase deficiency enhances
human coronavirus 229E infection. J Infect Dis
2008;197:812-6
14. Ho HY, Cheng ML, Weng SF, Leu YL and Chiu DT. Antiviral
effect of epigallocatechin gallate on enterovirus 71. J
Agric Food Chem 2009;57:6140-7
15. Pratico D. Evidence of oxidative stress in Alzheimer's
disease brain and antioxidant therapy: lights and
shadows. Ann N Y Acad Sci 2008;1147:70-8
16. Wan GH, Tsai SC and Chiu DT. Decreased blood activity
of glucose-6-phosphate dehydrogenase associates with
increased risk for diabetes mellitus. Endocrine
2002;19:191-5
17. Bradley JR. TNF-mediated inflammatory disease. J Pathol
2008;214:149-60
18. Mukhopadhyay S, Hoidal JR and Mukherjee TK. Role of
TNFalpha in pulmonary pathophysiology. Respir Res
2006;7:125
19. Shen HM, Pervaiz S. TNF receptor superfamily-induced
cell death: redox-dependent execution. Faseb J
2006;20:1589-98
20. Kim H, Hwang JS, Woo CH, et al. TNF-alpha-induced up-
regulation of intercellular adhesion molecule-1 is
regulated by a Rac-ROS-dependent cascade in human
airway epithelial cells. Exp Mol Med 2008;40:167-75
21. Wajant H, Pfizenmaier K and Scheurich P. Tumor necrosis
factor signaling. Cell Death Differ 2003;10:45-65
22. Wullaert A, Heyninck K and Beyaert R. Mechanisms of
crosstalk between TNF-induced NF-kappaB and JNK
activation in hepatocytes. Biochem Pharmacol
2006;72:1090-101
23. Chen CC, Sun YT, Chen JJ and Chiu KT. TNF-alpha-induced
cyclooxygenase-2 expression in human lung epithelial
cells:involvement of the phospholipase C-gamma 2,
protein kinase C-alpha, tyrosine kinase, NF-kappa B-
inducing kinase, and I-kappaB kinase 1/2 pathway. J
Immunol 2000;165:2719-28
24. Lin CC, Hsiao LD, Chien CS, Lee CW, Hsieh JT and Yang
CM.Tumor necrosis factor-alpha-induced cyclooxygenase-
2 expression in human tracheal smooth muscle cells:
involvement of p42/p44 and p38 mitogen-activated
protein kinases and nuclear factor-kappaB. Cell Signal
2004;16:597-607
25. Burke-Gaffney A, Hellewell PG. Tumour necrosis factor
-alpha-induced ICAM-1 expression in human vascular
endothelial and lung epithelial cells: modulation by
tyrosine kinase inhibitors. Br J Pharmacol
1996;119:1149-58
26. Woo CH, Eom YW, Yoo MH, et al. Tumor necrosis factor-
alpha generates reactive oxygen species via a cytosolic
phospholipase A2-linked cascade. J Biol Chem
2000;275:32357-62
27. McCubrey JA, Lahair MM and Franklin RA. Reactive oxygen
species-induced activation of the MAP kinase signaling
pathways.Antioxid Redox Signal 2006;8:1775-89
28. Thannickal VJ, Fanburg BL. Reactive oxygen species in
cell signaling. Am J Physiol Lung Cell Mol Physiol
2000;279:L1005-28
29. Hancock JT, Desikan R and Neill SJ. Role of reactive
oxygen species in cell signalling pathways. Biochem Soc
Trans 2001;29:345-50
30. Quinn MT, Ammons MC and Deleo FR. The expanding role of
NADPH oxidases in health and disease: no longer just
agents of death and destruction. Clin Sci (Lond)
2006;111:1-20
31. Dworakowski R, Anilkumar N, Zhang M and Shah AM. Redox
signalling involving NADPH oxidase-derived reactive
oxygen species. Biochem Soc Trans 2006;34:960-4
32. Lambeth JD. NOX enzymes and the biology of reactive
oxygen. Nat Rev Immunol 2004;4:181-9
33. Morgan MJ, Kim YS and Liu ZG. TNFalpha and reactive
oxygen species in necrotic cell death. Cell Res
2008;18:343-9
34. Kim YS, Morgan MJ, Choksi S and Liu ZG. TNF-induced
activation of the Nox1 NADPH oxidase and its role in
the induction of necrotic cell death. Mol Cell
2007;26:675-87
35. Li Q, Spencer NY, Oakley FD, Buettner GR and Engelhardt
J.Endosomal Nox2 Facilitates Redox-Dependent Induction
of NF-κB by TNF-alpha. Antioxid Redox Signal
2009;11:1249-1263
36. Bedard K, Krause KH. The NOX family of ROS-generating
NADPH oxidases: physiology and pathophysiology. Physiol
Rev 2007;87:245-313
37. Jamaluddin M, Wang S, Boldogh I, Tian B and Brasier AR.
TNF-alpha-induced NF-kappaB/RelA Ser(276)
phosphorylation and enhanceosome formation is mediated
by an ROS-dependent PKAc pathway. Cell Signal
2007;19:1419-33
38. Lin CC, Tseng HW, Hsieh HL, et al. Tumor necrosis
factor-alpha induces MMP-9 expression via p42/p44 MAPK,
JNK, and nuclear factor-kappaB in A549 cells. Toxicol
Appl Pharmacol 2008;229:386-98
39. Alexandre J, Batteux F, Nicco C, et al. Accumulation of
hydrogen peroxide is an early and crucial step for
paclitaxel-induced cancer cell death both in vitro and
in vivo. Int J Cancer 2006;119:41-8
40. Ying B, Yang T, Song X, et al. Quercetin inhibits IL-1
beta-induced ICAM-1 expression in pulmonary epithelial
cell line A549 through the MAPK pathways. Mol Biol Rep
2008 [Epub ahead of print] (online first)
41. Cheng SE, Luo SF, Jou MJ, et al. Cigarette smoke
extract induces cytosolic phospholipase A(2) expression
via NADPH oxidase, MAPKs, AP-1, and NF-kappaB in human
tracheal smooth muscle cells. Free Radic Biol Med
2009;46:948-960
42. Lazzarino G, Amorini AM, Fazzina G, et al. Single-
sample preparation for simultaneous cellular redox and
energy state determination. Anal
Biochem 2003;322:51-9
43. Tsai KJ, Hung IJ, Chow CK, Stern A, Chao SS and Chiu
DT. Impaired production of nitric oxide, superoxide,
and hydrogen peroxide in glucose 6-phosphate-
dehydrogenase-deficient granulocytes. FEBS Letter
1998;436:411-4
44. Tsatsanis C, Androulidaki A, Venihaki M and Margioris
AN.Signalling networks regulating cyclooxygenase-2. Int
J Biochem Cell Biol 2006;38:1654-61
45. Kam PC, See AU. Cyclo-oxygenase isoenzymes:
physiological and pharmacological role. Anaesthesia
2000;55:442-9
46. Park GY, Christman JW. Involvement of cyclooxygenase-2
and prostaglandins in the molecular pathogenesis of
inflammatory lung diseases. Am J Physiol Lung Cell Mol
Physiol 2006;290:L797-805
47. McCoy MK, Tansey MG. TNF signaling inhibition in the
CNS:implications for normal brain function and
neurodegenerative disease. J Neuroinflammation 2008;5:45
48. Gauss KA, Nelson-Overton LK, Siemsen DW, Gao Y, DeLeo
FR and Quinn MT. Role of NF-kappaB in transcriptional
regulation of the phagocyte NADPH oxidase by tumor
necrosis factor-alpha. J Leukoc Biol 2007;82:729-41
49. Von Knethen A, Callsen D and Brune B. Superoxide
attenuates macrophage apoptosis by NF-kappa B and AP-1
activation that promotes cyclooxygenase-2 expression. J
Immunol 1999;163:2858-66
50. Rahman I. Regulation of nuclear factor-kappa B,
activator protein-1, and glutathione levels by tumor
necrosis factor-alpha and dexamethasone in alveolar
epithelial cells. Biochem Pharmacol 2000;60:1041-9
51. Rahman I, MacNee W. Oxidative stress and regulation of
glutathione in lung inflammation. Eur Respir J
2000;16:534-54
52. Rahman I, Biswas SK, Jimenez LA, Torres M and Forman
HJ. Glutathione, stress responses, and redox signaling
in lung inflammation. Antioxid Redox Signal 2005;7:42-59
53. Geiszt M. NADPH oxidases: new kids on the block.
Cardiovasc Res 2006;71:289-99
54. Stefanska J, Pawliczak R. Apocynin: molecular
aptitudes. Mediators Inflamm 2008;2008:106507
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. TNF-alpha影響腎臟癌癌化機制之探討
2. 以建立G6PD缺乏的細胞為平台探討氧化壓力對病毒感染、細胞老化以及癌細胞轉移的影響
3. 幽門桿菌刺激胃上皮細胞株表現腫瘤壞死因子的機制探討
4. 探討TNF-alpha在人類風濕性關節炎之滑液膜纖維母細胞上誘發磷脂酶A2表現機轉
5. 共軛亞麻油酸對TNF-alpha誘發小鼠淋巴結內皮細胞SVEC4-10表現黏著分子MAdCAM-1之影響
6. 探討抗氧化酵素對於人類主動脈內皮細胞受腫瘤壞死因子刺激表現細胞間黏附因子之影響與其機轉
7. 葡萄糖六磷酸去氫脢新突變型的生化功能分析及雙元體結合區之定位
8. 研究人類葡萄糖-6-磷酸去氫脢(G6PD)在癌細胞的表現及抗癌藥物對G6PD過度表現之纖維母細胞的影響
9. 葡萄糖-六-磷酸去氫酉每(G6PD)在細胞抗氧化及致癌化轉型所扮演的角色
10. 探討2-(4-aminophenyl)-7-methoxybenzothiazole對人類白血病U937細胞TNF-alpha與TNFR2表現之效應
11. 探討一氧化碳釋放因子調控第一型血基質氧化酵素之表現及其抗腫瘤壞死因子引起肺部發炎之機轉
12. 探討CXCR3於TNF- alpha 誘導之腎臟癌細胞移動能力中所扮演之角色
13. 鉛工人和對照組之表皮生長因子受體(EGFR)與ORAI1基因多型性對血清TNF-α值及血鉛值之相關性研究
14. 探討CXCR2於TNF-alpha誘導之腎臟癌癌化過程中所扮演的角色
15. 銀杏葉萃取物抗動脈粥狀硬化的生成機轉之研究 -從抗氧化能力到增加第一型血色素氧化酵素
 
系統版面圖檔 系統版面圖檔