|
[1] Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R. B.; Koul, H. K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68:1777-1785; 2008. [2] Bondarenko, O. I.; Sahach, V. F. [Role of mitochondria in reglulation of endothelial cell hyperpolarization to acetylcholine]. Fiziol Zh 52:6-11; 2006. [3] Jezek, P.; Hlavata, L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478-2503; 2005. [4] Schafer, M.; Werner, S. Oxidative stress in normal and impaired wound repair. Pharmacol Res 58:165-171; 2008. [5] Santangelo, F.; Witko-Sarsat, V.; Drueke, T.; Descamps-Latscha, B. Restoring glutathione as a therapeutic strategy in chronic kidney disease. Nephrol Dial Transplant 19:1951-1955; 2004. [6] Meister, A. Glutathione metabolism and its selective modification. J Biol Chem 263:17205-17208; 1988. [7] Deneke, S. M.; Fanburg, B. L. Regulation of cellular glutathione. Am J Physiol 257:L163-173; 1989. [8] Wu, D.; Meydani, S. N.; Sastre, J.; Hayek, M.; Meydani, M. In vitro glutathione supplementation enhances interleukin-2 production and mitogenic response of peripheral blood mononuclear cells from young and old subjects. J Nutr 124:655-663; 1994. [9] Zinellu, A.; Sotgia, S.; Usai, M. F.; Chessa, R.; Deiana, L.; Carru, C. Thiol redox status evaluation in red blood cells by capillary electrophoresis-laser induced fluorescence detection. Electrophoresis 26:1963-1968; 2005. [10] Anderson, M. E. Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111-112:1-14; 1998. [11] Hayes, J. D.; McLellan, L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31:273-300; 1999. [12] Carlucci, F.; Tabucchi, A.; Biagioli, B.; Sani, G.; Lisi, G.; Maccherini, M.; Rosi, F.; Marinello, E. Capillary electrophoresis in the evaluation of ischemic injury: simultaneous determination of purine compounds and glutathione. Electrophoresis 21:1552-1557; 2000. [13] Meister, A.; Anderson, M. E. Glutathione. Annu Rev Biochem 52:711-760; 1983. [14] Misra, I.; Griffith, O. W. Expression and purification of human gamma-glutamylcysteine synthetase. Protein Expr Purif 13:268-276; 1998. [15] White, A. T.; Spence, F. J.; Chipman, J. K. Glutathione depletion modulates gene expression in HepG2 cells via activation of protein kinase C alpha. Toxicology 216:168-180; 2005. [16] Winterbourn, C. C.; Metodiewa, D. The reaction of superoxide with reduced glutathione. Arch Biochem Biophys 314:284-290; 1994. [17] Dickinson, D. A.; Forman, H. J. Glutathione in defense and signaling: lessons from a small thiol. Ann N Y Acad Sci 973:488-504; 2002. [18] Bermejo, P.; Martin-Aragon, S.; Benedi, J.; Susin, C.; Felici, E.; Gil, P.; Ribera, J. M.; Villar, A. M. Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer's disease from Mild Cognitive Impairment. Free Radic Res 42:162-170; 2008. [19] Jones, D. P. Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 9:169-181; 2006. [20] Brioukhanov, A. L.; Netrusov, A. I. Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Mosc) 69:949-962; 2004. [21] Scott, M. D.; Zuo, L.; Lubin, B. H.; Chiu, D. T. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Blood 77:2059-2064; 1991. [22] Ho, H. Y.; Cheng, M. L.; Cheng, P. F.; Chiu, D. T. Low oxygen tension alleviates oxidative damage and delays cellular senescence in G6PD-deficient cells. Free Radic Res 41:571-579; 2007. [23] Wan, G. H.; Lin, K. K.; Tsai, S. C.; Chiu, D. T. Decreased glucose-6-phosphate-dehydrogenase (G6PD) activity and risk of senile cataract in Taiwan. Ophthalmic Epidemiol 13:109-114; 2006. [24] Ho, H. Y.; Wei, T. T.; Cheng, M. L.; Chiu, D. T. Green tea polyphenol epigallocatechin-3-gallate protects cells against peroxynitrite-induced cytotoxicity: modulatory effect of cellular G6PD status. J Agric Food Chem 54:1638-1645; 2006. [25] Ho, H. Y.; Cheng, M. L.; Chiu, D. T. G6PD--an old bottle with new wine. Chang Gung Med J 28:606-612; 2005. [26] Ho, H. Y.; Cheng, M. L.; Lu, F. J.; Chou, Y. H.; Stern, A.; Liang, C. M.; Chiu, D. T. Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. Free Radic Biol Med 29:156-169; 2000. [27] Cheng, M. L.; Ho, H. Y.; Liang, C. M.; Chou, Y. H.; Stern, A.; Lu, F. J.; Chiu, D. T. Cellular glucose-6-phosphate dehydrogenase (G6PD) status modulates the effects of nitric oxide (NO) on human foreskin fibroblasts. FEBS Lett 475:257-262; 2000. [28] van der Donk, W. A.; Zhao, H. Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 14:421-426; 2003. [29] Pollak, N.; Dolle, C.; Ziegler, M. The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J 402:205-218; 2007. [30] Liguzinski, P.; Korzeniewski, B. How to keep glycolytic metabolite concentrations constant when ATP/ADP and NADH/NAD+ change. Syst Biol (Stevenage) 153:332-334; 2006. [31] Eto, K.; Tsubamoto, Y.; Terauchi, Y.; Sugiyama, T.; Kishimoto, T.; Takahashi, N.; Yamauchi, N.; Kubota, N.; Murayama, S.; Aizawa, T.; Akanuma, Y.; Aizawa, S.; Kasai, H.; Yazaki, Y.; Kadowaki, T. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283:981-985; 1999. [32] Biaglow, J. E.; Miller, R. A. The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy. Cancer Biol Ther 4:6-13; 2005. [33] Kalinina, E. V.; Chernov, N. N.; Saprin, A. N. Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes. Biochemistry (Mosc) 73:1493-1510; 2008. [34] Kawai, S.; Fukuda, C.; Mukai, T.; Murata, K. MJ0917 in archaeon Methanococcus jannaschii is a novel NADP phosphatase/NAD kinase. J Biol Chem 280:39200-39207; 2005. [35] Lerner, F.; Niere, M.; Ludwig, A.; Ziegler, M. Structural and functional characterization of human NAD kinase. Biochem Biophys Res Commun 288:69-74; 2001. [36] Hamel, R.; Appanna, V. D.; Viswanatha, T.; Puiseux-Dao, S. Overexpression of isocitrate lyase is an important strategy in the survival of Pseudomonas fluorescens exposed to aluminum. Biochem Biophys Res Commun 317:1189-1194; 2004. [37] Middaugh, J.; Hamel, R.; Jean-Baptiste, G.; Beriault, R.; Chenier, D.; Appanna, V. D. Aluminum triggers decreased aconitase activity via Fe-S cluster disruption and the overexpression of isocitrate dehydrogenase and isocitrate lyase: a metabolic network mediating cellular survival. J Biol Chem 280:3159-3165; 2005. [38] Beriault, R.; Chenier, D.; Singh, R.; Middaugh, J.; Mailloux, R.; Appanna, V. Detection and purification of glucose 6-phosphate dehydrogenase, malic enzyme, and NADP-dependent isocitrate dehydrogenase by blue native polyacrylamide gel electrophoresis. Electrophoresis 26:2892-2897; 2005. [39] Ochiai, A.; Mori, S.; Kawai, S.; Murata, K. Overexpression, purification, and characterization of ATP-NAD kinase of Sphingomonas sp. A1. Protein Expr Purif 36:124-130; 2004. [40] Grose, J. H.; Joss, L.; Velick, S. F.; Roth, J. R. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci U S A 103:7601-7606; 2006. [41] Pollak, N.; Niere, M.; Ziegler, M. NAD kinase levels control the NADPH concentration in human cells. J Biol Chem 282:33562-33571; 2007. [42] Tien Kuo, M.; Savaraj, N. Roles of reactive oxygen species in hepatocarcinogenesis and drug resistance gene expression in liver cancers. Mol Carcinog 45:701-709; 2006. [43] Moriya, K.; Nakagawa, K.; Santa, T.; Shintani, Y.; Fujie, H.; Miyoshi, H.; Tsutsumi, T.; Miyazawa, T.; Ishibashi, K.; Horie, T.; Imai, K.; Todoroki, T.; Kimura, S.; Koike, K. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 61:4365-4370; 2001. [44] Shen, H. M.; Shi, C. Y.; Shen, Y.; Ong, C. N. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic Biol Med 21:139-146; 1996. [45] Youssef, J. A.; Badr, M. Z. Aging and enhanced hepatocarcinogenicity by peroxisome proliferator-activated receptor alpha agonists. Ageing Res Rev 4:103-118; 2005. [46] Reddy, J. K.; Rao, S.; Moody, D. E. Hepatocellular carcinomas in acatalasemic mice treated with nafenopin, a hypolipidemic peroxisome proliferator. Cancer Res 36:1211-1217; 1976. [47] Furukawa, O.; Matsui, H.; Suzuki, N.; Okabe, S. Epidermal growth factor protects rat epithelial cells against acid-induced damage through the activation of Na+/H+ exchangers. J Pharmacol Exp Ther 288:620-626; 1999. [48] Bailey, S. M. A review of the role of reactive oxygen and nitrogen species in alcohol-induced mitochondrial dysfunction. Free Radic Res 37:585-596; 2003. [49] Wheeler, M. D. Endotoxin and Kupffer cell activation in alcoholic liver disease. Alcohol Res Health 27:300-306; 2003. [50] Haga, S.; Terui, K.; Fukai, M.; Oikawa, Y.; Irani, K.; Furukawa, H.; Todo, S.; Ozaki, M. Preventing hypoxia/reoxygenation damage to hepatocytes by p66(shc) ablation: up-regulation of anti-oxidant and anti-apoptotic proteins. J Hepatol 48:422-432; 2008. [51] St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J. M.; Rhee, J.; Jager, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; Simon, D. K.; Bachoo, R.; Spiegelman, B. M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397-408; 2006. [52] Macip, S.; Kosoy, A.; Lee, S. W.; O'Connell, M. J.; Aaronson, S. A. Oxidative stress induces a prolonged but reversible arrest in p53-null cancer cells, involving a Chk1-dependent G2 checkpoint. Oncogene 25:6037-6047; 2006. [53] Miles, G. P.; Samuel, M. A.; Zhang, Y.; Ellis, B. E. RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3. Environ Pollut 138:230-237; 2005. [54] Wong, H. L.; Sakamoto, T.; Kawasaki, T.; Umemura, K.; Shimamoto, K. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447-1456; 2004. [55] Blander, G.; de Oliveira, R. M.; Conboy, C. M.; Haigis, M.; Guarente, L. Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem 278:38966-38969; 2003. [56] Gao, L. P.; Cheng, M. L.; Chou, H. J.; Yang, Y. H.; Ho, H. Y.; Chiu, D.T.Y. Ineffective GSH regeneration enhances G6PD-knockdown Hep G2 cell sensitivity to diamide-induced oxidative damage. Free Radic Biol Med; 2009. [57] Coolen, E. J.; Arts, I. C.; Swennen, E. L.; Bast, A.; Stuart, M. A.; Dagnelie, P. C. Simultaneous determination of adenosine triphosphate and its metabolites in human whole blood by RP-HPLC and UV-detection. J Chromatogr B Analyt Technol Biomed Life Sci 864:43-51; 2008. [58] Lazzarino, G.; Amorini, A. M.; Fazzina, G.; Vagnozzi, R.; Signoretti, S.; Donzelli, S.; Di Stasio, E.; Giardina, B.; Tavazzi, B. Single-sample preparation for simultaneous cellular redox and energy state determination. Anal Biochem 322:51-59; 2003. [59] Shin, S. W.; Oh, C. J.; Kil, I. S.; Park, J. W. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity. Free Radic Res 43:409-416; 2009. [60] Yang, E. S.; Lee, J. H.; Park, J. W. Ethanol induces peroxynitrite-mediated toxicity through inactivation of NADP+-dependent isocitrate dehydrogenase and superoxide dismutase. Biochimie 90:1316-1324; 2008. [61] Kosower, N. S.; Kosower, E. M. Diamide: an oxidant probe for thiols. Methods Enzymol 251:123-133; 1995. [62] Filosa, S.; Fico, A.; Paglialunga, F.; Balestrieri, M.; Crooke, A.; Verde, P.; Abrescia, P.; Bautista, J. M.; Martini, G. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Biochem J 370:935-943; 2003. [63] Mori, S.; Kawai, S.; Mikami, B.; Murata, K. Crystallization and preliminary X-ray analysis of NAD kinase from Mycobacterium tuberculosis H37Rv. Acta Crystallogr D Biol Crystallogr 57:1319-1320; 2001. [64] Bieganowski, P.; Seidle, H. F.; Wojcik, M.; Brenner, C. Synthetic lethal and biochemical analyses of NAD and NADH kinases in Saccharomyces cerevisiae establish separation of cellular functions. J Biol Chem 281:22439-22445; 2006. [65] Magni, G.; Orsomando, G.; Raffaelli, N. Structural and functional properties of NAD kinase, a key enzyme in NADP biosynthesis. Mini Rev Med Chem 6:739-746; 2006. [66] Berger, F.; Ramirez-Hernandez, M. H.; Ziegler, M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci 29:111-118; 2004. [67] Frederiks, W. M.; Vizan, P.; Bosch, K. S.; Vreeling-Sindelarova, H.; Boren, J.; Cascante, M. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver. Int J Exp Pathol 89:232-240; 2008. [68] Ayene, I. S.; Biaglow, J. E.; Kachur, A. V.; Stamato, T. D.; Koch, C. J. Mutation in G6PD gene leads to loss of cellular control of protein glutathionylation: mechanism and implication. J Cell Biochem 103:123-135; 2008. [69] Biaglow, J. E.; Ayene, I. S.; Koch, C. J.; Donahue, J.; Stamato, T. D.; Tuttle, S. W. G6PD deficient cells and the bioreduction of disulfides: effects of DHEA, GSH depletion and phenylarsine oxide. Biochem Biophys Res Commun 273:846-852; 2000. [70] Klatt, P.; Molina, E. P.; De Lacoba, M. G.; Padilla, C. A.; Martinez-Galesteo, E.; Barcena, J. A.; Lamas, S. Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J 13:1481-1490; 1999. [71] Pineda-Molina, E.; Klatt, P.; Vazquez, J.; Marina, A.; Garcia de Lacoba, M.; Perez-Sala, D.; Lamas, S. Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40:14134-14142; 2001.
|