跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 02:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘韋仲
研究生(外文):Wei Chung Pan
論文名稱:開發能以脈衝式氣體調控效能之微流體褐藻膠微球產生器及其在細胞微包埋之應用
論文名稱(外文):Development of microfluidic alginate microsphere generator with its performance tunable by pulsed airflow injection for the encapsulation of cells
指導教授:吳旻憲
指導教授(外文):M. S. Wu
學位類別:碩士
校院名稱:長庚大學
系所名稱:生化與生醫工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:116
中文關鍵詞:微流體微包埋微球褐藻膠微粒
外文關鍵詞:MicrofluidicsMicroencapsulationMicrosphereAlginateMicrobeads
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
利用微流體系統進行細胞微包埋已經被廣泛的應用在不同的目的上,然而這些類型的研究不管在技術層面或是製程上要求嚴苛,這些嚴苛的條件可能會限制這類研究發展;為了在一個簡單、可控制及均一的環境下進行細胞包埋,故本研究開發一套微球製備裝置,此裝置是以PDMS為材料配合軟刻蝕的技術製造而成,其特點在於操控脈動式氣體並將連續式的懸浮液截成液體片段,其目的在於精準控制微球的粒徑大小,簡單來說,一個T型的微流體管路被設計出,在此T字管路中,其中一個管道,由針筒注射幫浦注入樣品並驅動連續式流體,另一管道則是輸入脈動式氣體,此脈動式氣體的頻率控制是由一組電磁閥及一組可控制式電子迴路模組配合而成,在此研究中,透過不同流速及不同脈動式氣體頻率的控制下,可得到不同片段大小的液體體積,這些存在於微管道中的液體段,最後藉由晶片末端毛細管(內徑 75 μm) 離開晶片本體,並在毛細管外形成微滴,接著將此毛細胞浸入氯化鈣溶液內而凝膠形成微球,透過這種方法,我們可以簡易的控制細胞包埋的粒徑大小,並在相同流速下2 μl/min 配合不同的脈動式氣體在35、7.8 及 0.56 Hz的頻率下,可製造出粒徑150、250以及350 μm 的褐藻膠微粒,最後運用於細胞包埋上,其細胞存活率達95%以上,表示此包埋系統運用於細胞包埋,是可行的且對於細胞是友善的。
Microencapsulation of cells using microfluidic technology has been actively pursued recently for varied purposes. However, most of these studies were quite technically demanding or required delicate fabrications, which could hinder their widespread application. To microencapsulate cells in a simple, controllable and uniform manner, this study proposes a microfluidic microsphere generator, which was designed and was fabricated based on soft lithography of polydimethylsiloxane (PDMS). The key feature of the device is the manipulation of a pulsed air flow to segment a continuous suspension (e.g. alginate) flow in order to fine-tune the size of the resulting microsphere. Briefly, microchannels with T junction layout were designed. One of the microchannels was for a continuous suspension flow driven by a syringe pump and another one was for a pulsed air flow input controlled by an electromatgnetic valve coupled with a control circuit. In this study, the fragments of suspension with varied size in the microchannel can be created either by controlling the flow rate of suspension flow or the frequency of the pulsed air flow. The multiple generated suspension fragments in the microchannel were then delivered out of the system through a capillary tube (D: 75 μm) and the droplets formed at the tip of capillary tube were subsequently immersed into calcium chloride solution with a thin layer of sunflower oil covered. By this arrangement, cells-encapsulated micro-alginate beads can be created in a controllable manner. Our preliminary results showed that uniform micro-alginate beads with the size of 150, 250 and 300 μm in diameter can be generated at the set pulsed frequencies of 35, 7.8 and 4.4 Hz respectively under a fixed suspension flow rate of 2 μl/min. Finally, using the microencapsulated microfluidic chip to encapsulate cell, the cell viability is over 95% presents it is cell friendly.
指導教授推薦書 i
口試委員會審定書 ii
長庚大學博碩士論文著作授權書 iii
致 謝 iv
摘 要 v
Abstract vi
目 錄 vii
圖目錄 x
表目錄 xviii
Chapter I Introduction - 1 -
1.1 Microencapsulation - 1 -
1.2 Cell microencapsulation - 3 -
1.2.1 Articular cartilage tissue engineering - 8 -
1.3 The conventional methods for preparing microbeads for cell microencapsulation. - 18 -
1.3.1 Spray drying: - 19 -
1.3.2 Spray cooling/chilling: - 21 -
1.3.3 Extrusion: - 22 -
1.3.4 Fluidized bed: - 23 -
1.3.5 Coacervation: - 24 -
1.3.6 Liposome: - 24 -
1.4 Microfluidic technology - 25 -
1.4.1 Laminar flow: - 26 -
1.4.2 Diffusion: - 26 -
1.4.3 Fluidic Resistance: - 27 -
1.4.4 Surface area to volume ratio: - 27 -
1.4.5 Surface tension: - 27 -
1.4.6 Micromachining: - 27 -
1.4.7 Soft lithography: - 28 -
1.5 Microemulsification-droplet formation: - 28 -
1.5.1 Conventional emulsification: - 30 -
1.5.2 Membrane emulsification: - 31 -
1.5.3 Microfuidic-based microchannel emulsification: - 32 -
1.5.4 Microfuidic-based three-dimensional coaxial microcapillary device: - 33 -
1.5.5 Microfuidic-based two- dimension microfluidics: - 35 -
1.5.6 Other droplet formation technologies: - 42 -
1.6 Segment formation: - 44 -
1.6.1 Liquid-liquid plug formation: - 44 -
1.6.2 Gas-liquid slug formation: - 50 -
1.7 Motivation and objection: - 55 -
1.8 Alginate: - 57 -
Chapter II Material and method - 62 -
2.1 Design: - 62 -
2.2 Microfabrication: - 65 -
2.3 Experimental Setup: - 68 -
2.4 Evaluation of the alginate segment performance: - 71 -
2.5 Alginate beads formation: - 71 -
2.6 Chondrocyte isolation: - 72 -
2.7 Cell viability assay: - 72 -
2.8 Mirobeads size analysis: - 73 -
Chapter III Result and discussion - 74 -
Chapter IV Conclusions - 82 -
References - 83 -
[1] Fanger G.O. Microencapsulation: A Brief History and Introduction. In: Vandegaer J.E. (Ed.): Microencapsulation- Processes and Applications). Plenum Press, New York, London, (1974) 1-20.
[2] Gharsallaoui A., Roudaut G., Chambin O., Voilley A., Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40 (2007) 1107–1121
[3] Huang H.J., Chen X.D., Yuan W.K. Microencapsulation Based on Emulsification for Producing Pharmaceutical Products: A Literature Review. Dev. Chem. Eng. Mineral Process. 14(3/4) (2006) 515-544
[4] Kim Y.D., Morr C.V., Schenz T.W. Microencapsulation properties of gum Arabic and several food proteins: Liquid orange oil emulsion particles. Journal of Agricultural and Food Chemistry 44:5(1996) 1308-1313
[5] Sugawara S., Imai T., and Otagiri M., The controlled release ofprednisolone using alginate gel. Pharmaceutical Res, (1994) 272-277
[6] Wan L.S.C., Heng P.W.S., and Chan L.W., Drug Encapsulation in Alginate Microspheres by EmulsiJication. Joumal of Microencapsulation, 9: 3 (1992) 309-3 16
[7] Mi F.L., Sung H.W., Shyu S.S., Release of indomethacinfrom a novel chitosan microsphere prepared by naturally occurring crosslinker: examination of crosslinking and polycation-anionic drug interaction. J. Appl. Polym. Sci., 81 (2001) 1700-171
[8] Miyazawa K. Preparation of a new so3 capsule for cosmetics. Journal of Cosmetic Science, 51:4 (2000) 239-252
[9] Calvo P., Remuñán-López C., Vila-Jato J.L., Alonso M.J., Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science, 63:1 (1997) 125-132.

[10] Singh M. and O'Hagan D., The preparation and characterization of polymeric antigen delivery systems for oral administration. Advanced Drug Delivery Reviews, 34:2-3 (1998) 285-304
[11] Cleland J.L., Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines. Biotechnology Progress, 14:1 (1998) 102-107
[12] Tiourina O.P. and Sukhorukov G.B. Multilayer alginate/protamine microsized capsules: encapsulation of alpha-chymotrypsin and controlled release study. International Journal of Pharmaceutics, 242:1-2 (2002) 155-161
[13] Mi F.L., Shyu S.S., Chen C.T., Schoung J.Y., Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials, 20:17 (1999) 1603-1612
[14] Uludag H., De Vos P., Tresco P.A. Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews, 42 (2000) 29-64
[15] Orive G., Hernández R.M., Rodríguez Gascón A., Calafiore R., Chang T.M.S., De Vos P., Hortelano G., Pedraz J.L. History, challenges and perspectives of cell microencapsulation. Trends in Biotechnology, 22:2 (2004) 87-92
[16] Orive G., Gascón A.R., Hernández R.M., Igartua M., Pedraz J.L. Cell microencapsulation technology for biomedical purposes: novel insights and challenges. TRENDS in Pharmacological Sciences, 24:5 (2003) 207-210
[17] Bisceglie V. Uber die antineoplastische immunitat; heterologe Einpflnzung von Tumoren in Huhner-embryonen. Ztschr. Krebsforsch 40, (1933) 122–140
[18] Chick W.L., Like A.A., Lauris V. Beta cell culture on synthetic capillaries: an artificial endocrine pancreas. Science 187, (1975) 847–848
[19] Lim F. and Sun A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–909 (1980)
[20] Prakash S. and Chang T.M.S. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat. Med. 2, (1996) 883–887
[21] de Vos P., Faas M.M., Strand B., Calafiore R. Review: Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, (2006) 5603–5617
[22] Hortelano G., Al-Hendy A., Ofosu F.A., Chang P.L. Delivery of human factor IX in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia B. Blood 87, (1996) 5095–5103
[23] Mooney D.J., Langer R.S., Engineering biomaterials for tissue engineering: the 10– 100 micron scale, in: J.D. Bronzino (Ed.), The Biomedical Engineering Handbook, second edition, vol. 2, CRC Press (2000)
[24] Bhatia S.R., Khattak S.F., Roberts S.C. Polyelectrolytes for cell encapsulation. Current Opinion in Colloid & Interface Science, 10 (2005) 45 – 51
[25] Matthew J.E., Nazario Y.L., Roberts S.C., Bhatia S.R. Pluronic F127 gels as materials for mammalian cell encapsulation, Polym. Prepr. 43, (2002) 769–770
[26] Montes G.S. Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20, (1996)15–27
[27] McNicol D., Roughley P.J. Extraction and characterization of proteoglycan from human meniscus. Biochem J 185, (1980) 705–713
[28] Stockwell R.A. The cell density of human articular and costal cartilage. J Anat 101, (1967) 753–763
[29] Eyre D. Collagen of articular cartilage. Arthritis Res 4, (2002) 30–35
[30] Watanabe H, Yamada Y, Kimata K. Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem (Tokyo) 124, (1998) 687–693
[31] Buckwalter J.A., Rosenberg L.C., Hunziker E.B. Articular cartilage: composition, structure and response to injury, and methods of facilitating repair. In: Ewing JW (ed) Articular cartilage and knee joint function: basic science and arthroscopy. Raven Press, New York, (1990)19–56
[32] Kim H.K, Moran M.E., Salter R.B. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am 73, (1991)1301–1315
[33] Pridie K.H. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg [Br] 4, (1959) 618–619
[34] Steadman J.R., Rodrigo J.J., Briggs K.K., Sink E., Silliman J. Long-term results of full-thickness articular cartilage defects of the knee treated with debridement and microfracture. Read at the Linvatec Sports Medicine Conference, Vail, Colorado (1997)
[35] Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop 326, (1996) 270–283
[36] Gillogly S.D., Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther 28, (1998) 241–251
[37] Minas T. The role of cartilage repair techniques, including chondrocyte transplantation, in focal chondral knee damage. Instr Course Lect 48, (1999) 629–643
[38] Peterson L., Minas T., Brittberg M., Nilsson A., Sjögren-Jansson E., Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374, (2000) 212–234
[39] Schulz R.M., Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36, (2007) 539-568
[40] Marlovits S., Zeller P., Singer P., Resinger C., Vécsei V. Cartilage repair: generations of autologous chondrocyte transplantation, European Journal of Radiology 57, (2006) 24–31
[41] Bryant S.J., Anseth K.S. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage, Journal of Biomedical Materials Research Part A 64A, (2003) 70–79
[42] Söntjens S.H.M., Nettles D.L., Carnahan M.A., Setton L.A., Grinstaff M.W. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair, Biomacromolecules 7, (2006) 310–316
[43] Bhardwaj T., Pilliar R.M., Grynpas M.D., Kandel R.A. Effect of material geometry on cartilagenous tissue formation in vitro, Journal of Biomedical Materials Research 57, (2001) 190–199
[44] Li W.J.,. Danielson K.G, Alexander P.G., Tuan R.S., Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsiloncaprolactone) scaffolds, Journal of Biomedical Materials Research Part A 67A, (2003)1105–1114
[45] Vats A., Bielby R.C., Tolley N., Dickinson S.C., Boccaccini A.R., Hollander A.P., Bishop A.E., Polak J.M., Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment, Tissue Engineering 12, (2006) 1687–1697
[46] Kaps C., Bramlage C., Smolian H., Haisch A., Ungethum U., Burmester G.R., Sittinger M., Gross G., Haup l T. Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction, Arthritis and Rheumatism 46, (2002) 149–162
[47] Gooch K.J., Kwon J.H., Blunk T., Langer R., Freed L.E., Vunjak- Novakovic G. Effects of mixing intensity on tissue-engineered cartilage, Biotechnology and Bioengineering 72, (2001) 402–407
[48] Roberts A.B., Kondaiah P., Rosa F., Watanabe S., Good P., Danielpour D., Roche N.S., Rebbert M.L., Dawid I.B., Sporn M.B. Mesoderm induction in Xenopus laevis distinguishes between the various TGF-beta isoforms, Growth Factors 3, (1990) 277–286
[49] Fukumoto T., Sperling J.W., Sanyal A., Fitzsimmons J.S., Reinholz G.G., Conover C.A., O'Driscoll S.W. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro, Osteoarthritis Cartilage 11, (2003) 55–64
[50] Gooch K.J., Blunk T., Courter D.L., Sieminski A.L., Bursac P.M., Vunjak- Novakovic G., Freed L.E. IGF-I and mechanical environment interact to modulate engineered cartilage development, Biochemical and Biophysical Research Communications 286, (2001) 909–915
[51] Jakob M., Demarteau O., Schafer D., Hintermann B., Dick W., Heberer M., Martin I. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem 81, (2001) 368-377
[52] McGuigan, A.P., Sefton, M.V. Vascularized organoid engineered by modular assembly enables blood perfusion. PNAS 103 : 31, (2006) 11461–11466
[53] Khademhosseini, A., Langer, R. Review: Microengineered hydrogels for tissue engineering. Biomaterials 28, (2007) 5087–5092
[54] Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R.R. Organ printing: computer-aided jet-based 3D tissue engineering. TRENDS in Biotechnology 21:4 (2003) 157-161
[55] Fedorovich, N.E., Alblas, J., De Wijn, J.R., Hennink, W.E., Verbout, A.B.J., Dhert, W.J.A. Hydrogels as Extracellular Matrices for Skeletal Tissue Engineering: State-of-the-Art and Novel Application in Organ Printing. Tissue engineering 13, (2007)1905-1925
[56] Enobakhare B.O., Bader D.L., and Le D.A.e. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1, 9-dimethylmethylene blue. Anal. Biochem. 243, (1996) 189
[57] Kim, Y.J. Bonassar, L.J. and Grodzinsky A.J.. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J. Biomech. 28, (1995) 1055
[58] Gouin, S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends in food Science and Technology 15 (2004) 330-347
[59] Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40 (2007) 1107-1121.
[60] Johansen P., Merkle H.P., Gander B., Technological considerations related to the up-scaling of protein microcapsulation by spray-drying, Eur. J. Pharm. Biopharm. 50 (2000) 413-417
[61] Boza Y., Barbin D., Scamparini A.R.P. Effect of spray-drying on the quality of encapsulated cells of Beijerinckia sp. Process Biochemistry 39 (2004) 1275–1284
[62] Bence´zdi, D., Blake, A. Encapsulation and the controlled release of flavors. Leatherhead Food RA Ind. J., 2, (1999) 36–48.
[63] Uludag H., Horvath V., Black J.P., Sefton M.V. Viability and protein secretion from human hepatoma (HepG2) cells encapsulated in 400 μm polyacrylate microcapsules by submerged nozzle-liquid jet extrusion. Biotech. Bioeng, 44 (1994) 1199-1204.
[64] Freitas, S., Merkle, H.P., Gander, B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Controlled Release 102, (2005) 313-332
[65]. Godin, J., Chen, C.H., Cho, S.H., Qiao, W., Tsai, F., Lo, Y.H. Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip. J. Biophoton. 1:5 (2008) 355–376
[66] Chen H. and Meiners J. C. Topologic mixing on a microfluidic chip. Applied Physics Letters, 84 (2004) 2193-2195.
[67] Beebe D.J., Mensing G.A., and Walker G.M. Annual Review of Biomedical Engineering 4, (2002) 261
[68] Groisman A., Enzelberger M., and Quake S.R. Microfluidic Memory and Control Devices, vol. 300: American Association for the Advancement of Science, (2003) 955.
[69] Urbanski J.P., Thies W., Rhodes C., Amarasinghe S., and Thorsen T. Digital microfluidics using soft lithography. Lab on a Chip 6, (2006) 96-104.
[70] Prakash M. and Gershenfeld N. Microfluidic bubble logic Science 315:5813 (2007) 832-835
[71] Gleichmann N., Malsch D., Kielpinski M., Rossak W., Mayer G., and Henkel T. Toolkit for computational fluidic simulation and interactive parametrization of segmented flow based fluidic networks. Chemical Engineering Journal 135, (2008) 210
[72] Inoue I., Wakamoto Y., Moriguchi H., Okano K., and Yasuda K. On-chip culture system for observation of isolated individual cells. Lab on a Chip 1:1 (2001) 50-55
[73] Hansen C.L., Skordalakes E., Berger J.M., and Quake S.R. Proceedings of the National Academy of Sciences of the United States of America 99, (2002) 16531
[74] Beebe, D.J., Mensing, G.A., Walker, G.M. Physics and applicationals of microfluidics in biology Annu. Rev. Biomed. Eng, 4(2002) 261–86
[75] Brody J., Yager P. Diffusion-based extraction in a microfabricated device. Sensors and Actuators, A: Physical 58:1 (1997) 13–18
[76] Hatch A., Kamholz A.E., Hawkins K.R., Munson M.S., Schilling, E.A., Weigl B.H., Yager P. A rapid diffusion immunoassay in a T-sensor. Nature Biotechnology 19:5 (2001) 461-465
[77] White F. Viscous Fluid Flow. Boston: McGraw-Hill. 2nd ed (1991).
[78] Aumiller G., Chandross E., Tomlinson W., Weber H. Submicrometer resolution replication of relief patterns for integrated optics. J. Appl. Phys, 45 (1974) 4557–4562
[79] Basaran O.A. Small-scale free surface flows with breakup: Drop formation and emerging applications. AIChE Journal 48:9 1842-1848
[80] Stone H.A., Stroock A.D., and Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics 36 (2004) 381-411
[81] Matsumoto S., Ueda Y., Kita Y., Yonezawa D. Preparation of water-in-olive oil-in-water multiple-phase emulsions in an eatable form Agricultural and Biological Chemistry 42:4 (1978) 739-743
[82] Yoshida K., Sekine T., Matsuzaki F., Yanaki T.and Yamaguchi M. Stability of vitamin A in oil-in-water-in-oil-type multiple emulsions. J. Am. Oil Chem. Soc. 76, 195 (1999)
[83] Davis S.S., Walker I.M. Multiple emulsions as targetable delivery systems. Methods in Enzymology 149, (1987) 51-64
[84] Schubert H., Armbruster H. Principles of formation and stability of emulsions. International chemical engineering 32:1 (1992) 14-28
[85] Van Der Graaf, S., Schroën, C.G.P.H., Boom, R.M. Preparation of double emulsions by membrane emulsification-a review. Journal of Membrane Science 251, (2005) 7-15
[86] Garti N., Bisperink C. Double emulsions: progress and applications. Curr. Opin. Colloid Interface Sci.3, (1998) 357
[87] Williams R.A., Peng S.J., Wheeler D.A., Morley N.C., Taylor D., Whalley M., Houldsworth D.W. Controlled production of emulsions using a cross flow membrane. Chemical engineering research & design 76, (1998) 902-910
[88] Nisisako T. Review: Microstructured Devices for Preparing Controlled Multiple Emulsions. Chem. Eng. Technol.31, (2008) 1019-1098
[89] Kobayashi, I., Takano, T., Maeda, R., Wada, Y., Uemura, K., Nakajima, M. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluid Nanofluid 4, (2008) 167-177
[90] Chu L.Y., Utada A.S., Shah R.K., Kim J.-W., Weitz D.A. Controllable monodisperse multiple emulsions Angewandte Chemie - International Edition 46:47 (2007) 8970-8974
[91] Amici, E., Tetradis-Meris, G., de Torres, C.P., Jousse, F. Alginate gelation in microfluidic channels. Food Hydrocolloids 22, (2008) 97–104
[92] Choi C.H., Jung J.H., Rhee Y.W., Kim D.P., Shim S.E.and Lee C.S. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9, (2007) 855–862
[93] Shah, R.K., Shum, H.C., Rowat, A.C., Lee, D., Agresti, J.J., Utada, A.S., Chu, L.-Y., Weitz, D.A. Designer emulsions using microfluidics. Materialstoday 11:4 (2008) 18-27
[94] Okushima S., Nisisako T., Torii T. and Higuchi T. Controlled production of monodisperse double emulsions by two-step droplet break-up in microfluidic devices, Langmuir 20, (2004) 9905–9908
[95] Huang K.S., Lai T.H. and Lin Y.C. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6, (2006) 954-957
[96] Liu J., Liu K., Zhao L.B., Zeng Q., Guo Z.X., Zhao X.Z. Controlled-Release of Materials in Calcium Alginate Microbeads Prepared by Microfluidic Device. 1st International Conference on Bioinformatics and Biomedical Engineering, ICBBE, art. no. 4272804 (2007) 1241-1243
[97] Kim C., Lee K.S., Lee I.H., Shin K.S., Kang E.D., Lee K.J. and Kang J.Y. Three dimensional perfusion culture of encapsulated embryonic stem cells in microfluidic chip. IEEE, (2007) 1333-1334
[98] Yang C.H., Huang K.S., Chang J.Y. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 9, (2007) 253-259
[99] Hong, J.S., Shin, S.J., Lee, S., Wong, E., Cooper-White, J. Spherical and cylindrical microencapsulation of living cells using microfluidic devices. Korea-Australia Rheology 19:3 (2007) 157-164
[100] Klock, G., Frank, H., Houben, R., Zekorn, T., Horcher, A., Siebers, U., Wohrle, M., Zimmermann, U. Production of purified alginates suitable for use in imunoisolated transplantation. Appl Microbiol Biotechnol 40, (1994) 638-643
[101] Skurtys O., Aguilera J.M.. Review: Applications of Microfluidic Devices in Food Engineering. Food Biophysics 3, (2008) 1–15
[102] Lin, Y.-H., Chen, C.-T., Huang, L.L.H., Lee, G.-B. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications. Biomed Microdevices 9, (2007) 833–843
[103]. Choi C.H , Jung J.H., Rhee Y.W. , Kim D.P., Shim S.E.and Lee C.S. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9, (2007) 855–862
[104] Xie J. and Wang C.H. Electrospary in the dripping mode for cell microencapsulation. Colloid and Interface Science 312, (2007) 247-255
[105] Sugiura S., Oda T., Aoyagi Y., Matsuo R., Enomoto T., Matsumoto K., Nakamura T., Satake M., Ochiai A., Ohkohchi N., Nakajima M. Microfabricated airflow nozzle for microencapsulation of living cell into 150 micrometer microcapsules. Biomed Microdevices 9, (2007) 91-99
[106] Okuyama K. and Lenggoro I.W. Preparation of nanoparticles via spray route. Chemical Engineering Science 58:3-6 (2003) 537-547
[107] Rivest, C., Morrison, D.W.G., Ni, B., Rubin, J., Yadav, V., Mahdavi, A., Karp, J.M., Khademhosseini, A. Microscale hydrogels for medicine and biology: synthesis, characteristic and applications. Mechanics of materials and structures 2:6 (2007) 1103-1118
[108] Tice J.D., Song H., Lyon A.D. and Ismagilov R.F. Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers. Langmuir 19:22 (2003) 9127-9133
[109] Tan Y.C., Fisher J.S., Lee A.I., Cristini V. and Lee A.P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab on a Chip - Miniaturisation for Chemistry and Biology 4:4 (2004) 292-298
[110] Cho S.K., Moon H.J. and Kim C.J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems 12:1 (2003) 70-80
[111] Jeong W.J., Kim J.Y., Kim S., Lee S.H., Mensing G. and Beebe D.J. Hydrodynamic microfabrication via "on the fly" photopolymerization of microscale fibers and tubes. Lab on a Chip - Miniaturisation for Chemistry and Biology 4:6 (2004) 576-580
[112] Gunther A., Khan S.A., Thalmann M., Trachsel F. and Jensen K.F. Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip - Miniaturisation for Chemistry and Biology 4:4 (2004) 278-286
[113] Srinivasan, V., Pamula, V.K., Fair, R.B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip - Miniaturisation for Chemistry and Biology 4:4 (2004) 310-315
[114] Garstecki, P., Fuerstman, M.J., Stone, H.A., Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6, (2006) 437–446
[115] Song, H., Chen, D.L., Ismagilov, R.F. Reactions in Droplets in Microfluidic Channels. Angew. Chem. Int. Ed. 45, (2006) 7336 – 7356
[116] Song, H., Tice, J.D., Ismagilov, R.F. A microfluidic system for controlling reaction networks in time. Angewandte Chemie - International Edition 42:7 (2003) 768-772
[117] Song, H., Bringer, M.R., Tice, J.D., Gerdts, C.J., Ismagilov, R.F. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Applied Physics Letters 83:22 (2003) 4664-4666
[118] Anna S.L., Bontoux N., and Stone H.A. “Formation of dispersions using “flow focusing” in microchannels”, Applied Physics Letters 82:3 (2003) 364-366
[119] Garstecki P., Gitlin I., Diluzio W., Kumacheva E., Stone H.A., and Whitesides G.M. “Formation of monodisperse bubbles in a microfluidic flow-focusing device”, Applied Physics Letters 85:13 (2004) 2649-2651
[120] Garstecki P., Gañán-Calvo A.M., Whitesides G.M. Formation of bubbles and droplets in microfluidic systems. Bulletin of the Polish Academy of Sciences: Technical Sciences 53:4 (2005) 361-372
[121] R.E. Lee, Phycology (Cambridge, Cambridge, 1989)
[122] Fritschy, W.M., Wolters, G.H.J., Van Schilfgaarde, R. Effect of alginatepolylysine- alginate microencapsulation on in vitro insulin release from rat pancreatic islets. Diabetes 40 (1991) 37–43
[123] http://www.guiamarina.com
[124] Grant G.T., Morris E.R., Rees D.A., Smith P.J.C., Thom D. Biological interactions between polysaccharides and divalent cations: The egg box model. FEBS Letters 32:1 (1973) 195-198
[125] Draget K.I., Gaserod O., Aune I., Andersen P.O., Storbakken B., Stokke B.T., Smidsrod O. Effects of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels. Food Hydrocolloids 15:4-6 (2001) 485-490
[126] Strand B.L., Mørch Y.A., Skjåk-Bræk G. Alginate as immobilization matrix for cells. Trends Biotechnol 8, (1990) 71–78
[127] Clayton H.A., London N.J.M., Colloby P.S., Bell P.R.F., James R.F.L. The effect of capsule composition on the biocompatibility of alginatepoly-L-lysine capsules. J Microencapsul 8, (1991) 221-233
[128] Zimmermann H., Ehrhart F., Zimmermann D., Muller K., Katsen-globa A., Behringer M., Feilen P.J., Gessner P., Zimmermann G., Shirley S.G., Weber M.M., Metze J., Zimmermann U.. Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications. Appl. Phys. A 89, (2007) 909–922
[129] Huang, C.W., Huang, S.B., Lee, G.B. Pneumatic micropumps with serially connected actuation chambers. J. Micromech. Microeng. 16 (2006) 2265–2272
[130] Huang S.-B., Wu M.-H., Cui Z., Cui Z., Lee G.-B. A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance. J. Micromech. Microeng. 18 (2008) 045008
[131] Wang C.H. and Lee G.B. Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels J. Micromech. Microeng. 16 (2006) 341–348
[132] Huang C.W., Huang S.B. and Lee G.B. Pneumatic micropumps with serially connected actuation chambers J. Micromech. Microeng. 16, (2006) 2265–2272
[133] Snyder L.R. and Adler H.J. “Dispersion in segmented flow through glass tubing in continuous-flow analysis – nonideal model” Analytical Chemistry 48:7 (1976) 1022-1027
[134] Snyder L.R. and Adler H.J. “Dispersion in segmented flow through glass tubing in continuous-flow analysis – ideal model”. Analytical Chemistry 48:7 (1976) 1017-1022
[135] Smidsrod O. Molecular basis for some physical properties of alginates in the gel state. J Chem Soc Faraday Trans 57, (1974) 263–74
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊