|
[1] Fanger G.O. Microencapsulation: A Brief History and Introduction. In: Vandegaer J.E. (Ed.): Microencapsulation- Processes and Applications). Plenum Press, New York, London, (1974) 1-20. [2] Gharsallaoui A., Roudaut G., Chambin O., Voilley A., Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40 (2007) 1107–1121 [3] Huang H.J., Chen X.D., Yuan W.K. Microencapsulation Based on Emulsification for Producing Pharmaceutical Products: A Literature Review. Dev. Chem. Eng. Mineral Process. 14(3/4) (2006) 515-544 [4] Kim Y.D., Morr C.V., Schenz T.W. Microencapsulation properties of gum Arabic and several food proteins: Liquid orange oil emulsion particles. Journal of Agricultural and Food Chemistry 44:5(1996) 1308-1313 [5] Sugawara S., Imai T., and Otagiri M., The controlled release ofprednisolone using alginate gel. Pharmaceutical Res, (1994) 272-277 [6] Wan L.S.C., Heng P.W.S., and Chan L.W., Drug Encapsulation in Alginate Microspheres by EmulsiJication. Joumal of Microencapsulation, 9: 3 (1992) 309-3 16 [7] Mi F.L., Sung H.W., Shyu S.S., Release of indomethacinfrom a novel chitosan microsphere prepared by naturally occurring crosslinker: examination of crosslinking and polycation-anionic drug interaction. J. Appl. Polym. Sci., 81 (2001) 1700-171 [8] Miyazawa K. Preparation of a new so3 capsule for cosmetics. Journal of Cosmetic Science, 51:4 (2000) 239-252 [9] Calvo P., Remuñán-López C., Vila-Jato J.L., Alonso M.J., Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science, 63:1 (1997) 125-132.
[10] Singh M. and O'Hagan D., The preparation and characterization of polymeric antigen delivery systems for oral administration. Advanced Drug Delivery Reviews, 34:2-3 (1998) 285-304 [11] Cleland J.L., Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines. Biotechnology Progress, 14:1 (1998) 102-107 [12] Tiourina O.P. and Sukhorukov G.B. Multilayer alginate/protamine microsized capsules: encapsulation of alpha-chymotrypsin and controlled release study. International Journal of Pharmaceutics, 242:1-2 (2002) 155-161 [13] Mi F.L., Shyu S.S., Chen C.T., Schoung J.Y., Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials, 20:17 (1999) 1603-1612 [14] Uludag H., De Vos P., Tresco P.A. Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews, 42 (2000) 29-64 [15] Orive G., Hernández R.M., Rodríguez Gascón A., Calafiore R., Chang T.M.S., De Vos P., Hortelano G., Pedraz J.L. History, challenges and perspectives of cell microencapsulation. Trends in Biotechnology, 22:2 (2004) 87-92 [16] Orive G., Gascón A.R., Hernández R.M., Igartua M., Pedraz J.L. Cell microencapsulation technology for biomedical purposes: novel insights and challenges. TRENDS in Pharmacological Sciences, 24:5 (2003) 207-210 [17] Bisceglie V. Uber die antineoplastische immunitat; heterologe Einpflnzung von Tumoren in Huhner-embryonen. Ztschr. Krebsforsch 40, (1933) 122–140 [18] Chick W.L., Like A.A., Lauris V. Beta cell culture on synthetic capillaries: an artificial endocrine pancreas. Science 187, (1975) 847–848 [19] Lim F. and Sun A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–909 (1980) [20] Prakash S. and Chang T.M.S. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat. Med. 2, (1996) 883–887 [21] de Vos P., Faas M.M., Strand B., Calafiore R. Review: Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, (2006) 5603–5617 [22] Hortelano G., Al-Hendy A., Ofosu F.A., Chang P.L. Delivery of human factor IX in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia B. Blood 87, (1996) 5095–5103 [23] Mooney D.J., Langer R.S., Engineering biomaterials for tissue engineering: the 10– 100 micron scale, in: J.D. Bronzino (Ed.), The Biomedical Engineering Handbook, second edition, vol. 2, CRC Press (2000) [24] Bhatia S.R., Khattak S.F., Roberts S.C. Polyelectrolytes for cell encapsulation. Current Opinion in Colloid & Interface Science, 10 (2005) 45 – 51 [25] Matthew J.E., Nazario Y.L., Roberts S.C., Bhatia S.R. Pluronic F127 gels as materials for mammalian cell encapsulation, Polym. Prepr. 43, (2002) 769–770 [26] Montes G.S. Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20, (1996)15–27 [27] McNicol D., Roughley P.J. Extraction and characterization of proteoglycan from human meniscus. Biochem J 185, (1980) 705–713 [28] Stockwell R.A. The cell density of human articular and costal cartilage. J Anat 101, (1967) 753–763 [29] Eyre D. Collagen of articular cartilage. Arthritis Res 4, (2002) 30–35 [30] Watanabe H, Yamada Y, Kimata K. Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem (Tokyo) 124, (1998) 687–693 [31] Buckwalter J.A., Rosenberg L.C., Hunziker E.B. Articular cartilage: composition, structure and response to injury, and methods of facilitating repair. In: Ewing JW (ed) Articular cartilage and knee joint function: basic science and arthroscopy. Raven Press, New York, (1990)19–56 [32] Kim H.K, Moran M.E., Salter R.B. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am 73, (1991)1301–1315 [33] Pridie K.H. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg [Br] 4, (1959) 618–619 [34] Steadman J.R., Rodrigo J.J., Briggs K.K., Sink E., Silliman J. Long-term results of full-thickness articular cartilage defects of the knee treated with debridement and microfracture. Read at the Linvatec Sports Medicine Conference, Vail, Colorado (1997) [35] Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop 326, (1996) 270–283 [36] Gillogly S.D., Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther 28, (1998) 241–251 [37] Minas T. The role of cartilage repair techniques, including chondrocyte transplantation, in focal chondral knee damage. Instr Course Lect 48, (1999) 629–643 [38] Peterson L., Minas T., Brittberg M., Nilsson A., Sjögren-Jansson E., Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374, (2000) 212–234 [39] Schulz R.M., Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36, (2007) 539-568 [40] Marlovits S., Zeller P., Singer P., Resinger C., Vécsei V. Cartilage repair: generations of autologous chondrocyte transplantation, European Journal of Radiology 57, (2006) 24–31 [41] Bryant S.J., Anseth K.S. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage, Journal of Biomedical Materials Research Part A 64A, (2003) 70–79 [42] Söntjens S.H.M., Nettles D.L., Carnahan M.A., Setton L.A., Grinstaff M.W. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair, Biomacromolecules 7, (2006) 310–316 [43] Bhardwaj T., Pilliar R.M., Grynpas M.D., Kandel R.A. Effect of material geometry on cartilagenous tissue formation in vitro, Journal of Biomedical Materials Research 57, (2001) 190–199 [44] Li W.J.,. Danielson K.G, Alexander P.G., Tuan R.S., Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsiloncaprolactone) scaffolds, Journal of Biomedical Materials Research Part A 67A, (2003)1105–1114 [45] Vats A., Bielby R.C., Tolley N., Dickinson S.C., Boccaccini A.R., Hollander A.P., Bishop A.E., Polak J.M., Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment, Tissue Engineering 12, (2006) 1687–1697 [46] Kaps C., Bramlage C., Smolian H., Haisch A., Ungethum U., Burmester G.R., Sittinger M., Gross G., Haup l T. Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction, Arthritis and Rheumatism 46, (2002) 149–162 [47] Gooch K.J., Kwon J.H., Blunk T., Langer R., Freed L.E., Vunjak- Novakovic G. Effects of mixing intensity on tissue-engineered cartilage, Biotechnology and Bioengineering 72, (2001) 402–407 [48] Roberts A.B., Kondaiah P., Rosa F., Watanabe S., Good P., Danielpour D., Roche N.S., Rebbert M.L., Dawid I.B., Sporn M.B. Mesoderm induction in Xenopus laevis distinguishes between the various TGF-beta isoforms, Growth Factors 3, (1990) 277–286 [49] Fukumoto T., Sperling J.W., Sanyal A., Fitzsimmons J.S., Reinholz G.G., Conover C.A., O'Driscoll S.W. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro, Osteoarthritis Cartilage 11, (2003) 55–64 [50] Gooch K.J., Blunk T., Courter D.L., Sieminski A.L., Bursac P.M., Vunjak- Novakovic G., Freed L.E. IGF-I and mechanical environment interact to modulate engineered cartilage development, Biochemical and Biophysical Research Communications 286, (2001) 909–915 [51] Jakob M., Demarteau O., Schafer D., Hintermann B., Dick W., Heberer M., Martin I. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem 81, (2001) 368-377 [52] McGuigan, A.P., Sefton, M.V. Vascularized organoid engineered by modular assembly enables blood perfusion. PNAS 103 : 31, (2006) 11461–11466 [53] Khademhosseini, A., Langer, R. Review: Microengineered hydrogels for tissue engineering. Biomaterials 28, (2007) 5087–5092 [54] Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R.R. Organ printing: computer-aided jet-based 3D tissue engineering. TRENDS in Biotechnology 21:4 (2003) 157-161 [55] Fedorovich, N.E., Alblas, J., De Wijn, J.R., Hennink, W.E., Verbout, A.B.J., Dhert, W.J.A. Hydrogels as Extracellular Matrices for Skeletal Tissue Engineering: State-of-the-Art and Novel Application in Organ Printing. Tissue engineering 13, (2007)1905-1925 [56] Enobakhare B.O., Bader D.L., and Le D.A.e. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1, 9-dimethylmethylene blue. Anal. Biochem. 243, (1996) 189 [57] Kim, Y.J. Bonassar, L.J. and Grodzinsky A.J.. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J. Biomech. 28, (1995) 1055 [58] Gouin, S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends in food Science and Technology 15 (2004) 330-347 [59] Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40 (2007) 1107-1121. [60] Johansen P., Merkle H.P., Gander B., Technological considerations related to the up-scaling of protein microcapsulation by spray-drying, Eur. J. Pharm. Biopharm. 50 (2000) 413-417 [61] Boza Y., Barbin D., Scamparini A.R.P. Effect of spray-drying on the quality of encapsulated cells of Beijerinckia sp. Process Biochemistry 39 (2004) 1275–1284 [62] Bence´zdi, D., Blake, A. Encapsulation and the controlled release of flavors. Leatherhead Food RA Ind. J., 2, (1999) 36–48. [63] Uludag H., Horvath V., Black J.P., Sefton M.V. Viability and protein secretion from human hepatoma (HepG2) cells encapsulated in 400 μm polyacrylate microcapsules by submerged nozzle-liquid jet extrusion. Biotech. Bioeng, 44 (1994) 1199-1204. [64] Freitas, S., Merkle, H.P., Gander, B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Controlled Release 102, (2005) 313-332 [65]. Godin, J., Chen, C.H., Cho, S.H., Qiao, W., Tsai, F., Lo, Y.H. Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip. J. Biophoton. 1:5 (2008) 355–376 [66] Chen H. and Meiners J. C. Topologic mixing on a microfluidic chip. Applied Physics Letters, 84 (2004) 2193-2195. [67] Beebe D.J., Mensing G.A., and Walker G.M. Annual Review of Biomedical Engineering 4, (2002) 261 [68] Groisman A., Enzelberger M., and Quake S.R. Microfluidic Memory and Control Devices, vol. 300: American Association for the Advancement of Science, (2003) 955. [69] Urbanski J.P., Thies W., Rhodes C., Amarasinghe S., and Thorsen T. Digital microfluidics using soft lithography. Lab on a Chip 6, (2006) 96-104. [70] Prakash M. and Gershenfeld N. Microfluidic bubble logic Science 315:5813 (2007) 832-835 [71] Gleichmann N., Malsch D., Kielpinski M., Rossak W., Mayer G., and Henkel T. Toolkit for computational fluidic simulation and interactive parametrization of segmented flow based fluidic networks. Chemical Engineering Journal 135, (2008) 210 [72] Inoue I., Wakamoto Y., Moriguchi H., Okano K., and Yasuda K. On-chip culture system for observation of isolated individual cells. Lab on a Chip 1:1 (2001) 50-55 [73] Hansen C.L., Skordalakes E., Berger J.M., and Quake S.R. Proceedings of the National Academy of Sciences of the United States of America 99, (2002) 16531 [74] Beebe, D.J., Mensing, G.A., Walker, G.M. Physics and applicationals of microfluidics in biology Annu. Rev. Biomed. Eng, 4(2002) 261–86 [75] Brody J., Yager P. Diffusion-based extraction in a microfabricated device. Sensors and Actuators, A: Physical 58:1 (1997) 13–18 [76] Hatch A., Kamholz A.E., Hawkins K.R., Munson M.S., Schilling, E.A., Weigl B.H., Yager P. A rapid diffusion immunoassay in a T-sensor. Nature Biotechnology 19:5 (2001) 461-465 [77] White F. Viscous Fluid Flow. Boston: McGraw-Hill. 2nd ed (1991). [78] Aumiller G., Chandross E., Tomlinson W., Weber H. Submicrometer resolution replication of relief patterns for integrated optics. J. Appl. Phys, 45 (1974) 4557–4562 [79] Basaran O.A. Small-scale free surface flows with breakup: Drop formation and emerging applications. AIChE Journal 48:9 1842-1848 [80] Stone H.A., Stroock A.D., and Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics 36 (2004) 381-411 [81] Matsumoto S., Ueda Y., Kita Y., Yonezawa D. Preparation of water-in-olive oil-in-water multiple-phase emulsions in an eatable form Agricultural and Biological Chemistry 42:4 (1978) 739-743 [82] Yoshida K., Sekine T., Matsuzaki F., Yanaki T.and Yamaguchi M. Stability of vitamin A in oil-in-water-in-oil-type multiple emulsions. J. Am. Oil Chem. Soc. 76, 195 (1999) [83] Davis S.S., Walker I.M. Multiple emulsions as targetable delivery systems. Methods in Enzymology 149, (1987) 51-64 [84] Schubert H., Armbruster H. Principles of formation and stability of emulsions. International chemical engineering 32:1 (1992) 14-28 [85] Van Der Graaf, S., Schroën, C.G.P.H., Boom, R.M. Preparation of double emulsions by membrane emulsification-a review. Journal of Membrane Science 251, (2005) 7-15 [86] Garti N., Bisperink C. Double emulsions: progress and applications. Curr. Opin. Colloid Interface Sci.3, (1998) 357 [87] Williams R.A., Peng S.J., Wheeler D.A., Morley N.C., Taylor D., Whalley M., Houldsworth D.W. Controlled production of emulsions using a cross flow membrane. Chemical engineering research & design 76, (1998) 902-910 [88] Nisisako T. Review: Microstructured Devices for Preparing Controlled Multiple Emulsions. Chem. Eng. Technol.31, (2008) 1019-1098 [89] Kobayashi, I., Takano, T., Maeda, R., Wada, Y., Uemura, K., Nakajima, M. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluid Nanofluid 4, (2008) 167-177 [90] Chu L.Y., Utada A.S., Shah R.K., Kim J.-W., Weitz D.A. Controllable monodisperse multiple emulsions Angewandte Chemie - International Edition 46:47 (2007) 8970-8974 [91] Amici, E., Tetradis-Meris, G., de Torres, C.P., Jousse, F. Alginate gelation in microfluidic channels. Food Hydrocolloids 22, (2008) 97–104 [92] Choi C.H., Jung J.H., Rhee Y.W., Kim D.P., Shim S.E.and Lee C.S. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9, (2007) 855–862 [93] Shah, R.K., Shum, H.C., Rowat, A.C., Lee, D., Agresti, J.J., Utada, A.S., Chu, L.-Y., Weitz, D.A. Designer emulsions using microfluidics. Materialstoday 11:4 (2008) 18-27 [94] Okushima S., Nisisako T., Torii T. and Higuchi T. Controlled production of monodisperse double emulsions by two-step droplet break-up in microfluidic devices, Langmuir 20, (2004) 9905–9908 [95] Huang K.S., Lai T.H. and Lin Y.C. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6, (2006) 954-957 [96] Liu J., Liu K., Zhao L.B., Zeng Q., Guo Z.X., Zhao X.Z. Controlled-Release of Materials in Calcium Alginate Microbeads Prepared by Microfluidic Device. 1st International Conference on Bioinformatics and Biomedical Engineering, ICBBE, art. no. 4272804 (2007) 1241-1243 [97] Kim C., Lee K.S., Lee I.H., Shin K.S., Kang E.D., Lee K.J. and Kang J.Y. Three dimensional perfusion culture of encapsulated embryonic stem cells in microfluidic chip. IEEE, (2007) 1333-1334 [98] Yang C.H., Huang K.S., Chang J.Y. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed Microdevices 9, (2007) 253-259 [99] Hong, J.S., Shin, S.J., Lee, S., Wong, E., Cooper-White, J. Spherical and cylindrical microencapsulation of living cells using microfluidic devices. Korea-Australia Rheology 19:3 (2007) 157-164 [100] Klock, G., Frank, H., Houben, R., Zekorn, T., Horcher, A., Siebers, U., Wohrle, M., Zimmermann, U. Production of purified alginates suitable for use in imunoisolated transplantation. Appl Microbiol Biotechnol 40, (1994) 638-643 [101] Skurtys O., Aguilera J.M.. Review: Applications of Microfluidic Devices in Food Engineering. Food Biophysics 3, (2008) 1–15 [102] Lin, Y.-H., Chen, C.-T., Huang, L.L.H., Lee, G.-B. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications. Biomed Microdevices 9, (2007) 833–843 [103]. Choi C.H , Jung J.H., Rhee Y.W. , Kim D.P., Shim S.E.and Lee C.S. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9, (2007) 855–862 [104] Xie J. and Wang C.H. Electrospary in the dripping mode for cell microencapsulation. Colloid and Interface Science 312, (2007) 247-255 [105] Sugiura S., Oda T., Aoyagi Y., Matsuo R., Enomoto T., Matsumoto K., Nakamura T., Satake M., Ochiai A., Ohkohchi N., Nakajima M. Microfabricated airflow nozzle for microencapsulation of living cell into 150 micrometer microcapsules. Biomed Microdevices 9, (2007) 91-99 [106] Okuyama K. and Lenggoro I.W. Preparation of nanoparticles via spray route. Chemical Engineering Science 58:3-6 (2003) 537-547 [107] Rivest, C., Morrison, D.W.G., Ni, B., Rubin, J., Yadav, V., Mahdavi, A., Karp, J.M., Khademhosseini, A. Microscale hydrogels for medicine and biology: synthesis, characteristic and applications. Mechanics of materials and structures 2:6 (2007) 1103-1118 [108] Tice J.D., Song H., Lyon A.D. and Ismagilov R.F. Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers. Langmuir 19:22 (2003) 9127-9133 [109] Tan Y.C., Fisher J.S., Lee A.I., Cristini V. and Lee A.P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab on a Chip - Miniaturisation for Chemistry and Biology 4:4 (2004) 292-298 [110] Cho S.K., Moon H.J. and Kim C.J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems 12:1 (2003) 70-80 [111] Jeong W.J., Kim J.Y., Kim S., Lee S.H., Mensing G. and Beebe D.J. Hydrodynamic microfabrication via "on the fly" photopolymerization of microscale fibers and tubes. Lab on a Chip - Miniaturisation for Chemistry and Biology 4:6 (2004) 576-580 [112] Gunther A., Khan S.A., Thalmann M., Trachsel F. and Jensen K.F. Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip - Miniaturisation for Chemistry and Biology 4:4 (2004) 278-286 [113] Srinivasan, V., Pamula, V.K., Fair, R.B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip - Miniaturisation for Chemistry and Biology 4:4 (2004) 310-315 [114] Garstecki, P., Fuerstman, M.J., Stone, H.A., Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6, (2006) 437–446 [115] Song, H., Chen, D.L., Ismagilov, R.F. Reactions in Droplets in Microfluidic Channels. Angew. Chem. Int. Ed. 45, (2006) 7336 – 7356 [116] Song, H., Tice, J.D., Ismagilov, R.F. A microfluidic system for controlling reaction networks in time. Angewandte Chemie - International Edition 42:7 (2003) 768-772 [117] Song, H., Bringer, M.R., Tice, J.D., Gerdts, C.J., Ismagilov, R.F. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Applied Physics Letters 83:22 (2003) 4664-4666 [118] Anna S.L., Bontoux N., and Stone H.A. “Formation of dispersions using “flow focusing” in microchannels”, Applied Physics Letters 82:3 (2003) 364-366 [119] Garstecki P., Gitlin I., Diluzio W., Kumacheva E., Stone H.A., and Whitesides G.M. “Formation of monodisperse bubbles in a microfluidic flow-focusing device”, Applied Physics Letters 85:13 (2004) 2649-2651 [120] Garstecki P., Gañán-Calvo A.M., Whitesides G.M. Formation of bubbles and droplets in microfluidic systems. Bulletin of the Polish Academy of Sciences: Technical Sciences 53:4 (2005) 361-372 [121] R.E. Lee, Phycology (Cambridge, Cambridge, 1989) [122] Fritschy, W.M., Wolters, G.H.J., Van Schilfgaarde, R. Effect of alginatepolylysine- alginate microencapsulation on in vitro insulin release from rat pancreatic islets. Diabetes 40 (1991) 37–43 [123] http://www.guiamarina.com [124] Grant G.T., Morris E.R., Rees D.A., Smith P.J.C., Thom D. Biological interactions between polysaccharides and divalent cations: The egg box model. FEBS Letters 32:1 (1973) 195-198 [125] Draget K.I., Gaserod O., Aune I., Andersen P.O., Storbakken B., Stokke B.T., Smidsrod O. Effects of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels. Food Hydrocolloids 15:4-6 (2001) 485-490 [126] Strand B.L., Mørch Y.A., Skjåk-Bræk G. Alginate as immobilization matrix for cells. Trends Biotechnol 8, (1990) 71–78 [127] Clayton H.A., London N.J.M., Colloby P.S., Bell P.R.F., James R.F.L. The effect of capsule composition on the biocompatibility of alginatepoly-L-lysine capsules. J Microencapsul 8, (1991) 221-233 [128] Zimmermann H., Ehrhart F., Zimmermann D., Muller K., Katsen-globa A., Behringer M., Feilen P.J., Gessner P., Zimmermann G., Shirley S.G., Weber M.M., Metze J., Zimmermann U.. Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications. Appl. Phys. A 89, (2007) 909–922 [129] Huang, C.W., Huang, S.B., Lee, G.B. Pneumatic micropumps with serially connected actuation chambers. J. Micromech. Microeng. 16 (2006) 2265–2272 [130] Huang S.-B., Wu M.-H., Cui Z., Cui Z., Lee G.-B. A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance. J. Micromech. Microeng. 18 (2008) 045008 [131] Wang C.H. and Lee G.B. Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels J. Micromech. Microeng. 16 (2006) 341–348 [132] Huang C.W., Huang S.B. and Lee G.B. Pneumatic micropumps with serially connected actuation chambers J. Micromech. Microeng. 16, (2006) 2265–2272 [133] Snyder L.R. and Adler H.J. “Dispersion in segmented flow through glass tubing in continuous-flow analysis – nonideal model” Analytical Chemistry 48:7 (1976) 1022-1027 [134] Snyder L.R. and Adler H.J. “Dispersion in segmented flow through glass tubing in continuous-flow analysis – ideal model”. Analytical Chemistry 48:7 (1976) 1017-1022 [135] Smidsrod O. Molecular basis for some physical properties of alginates in the gel state. J Chem Soc Faraday Trans 57, (1974) 263–74
|