跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳湘婷
研究生(外文):Shiang Ting Chen
論文名稱:自然牙與三種不同植體系統連結在不同牙周狀態下之生物力學分析
論文名稱(外文):Biomechanical interaction in natural tooth connected with three implant systems under different periodontal status
指導教授:林峻立林峻立引用關係
指導教授(外文):C.L. Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
論文頁數:159
中文關鍵詞:有限元素植體系統連結支持系統
外文關鍵詞:FEImplants
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
當臨床下顎後牙區發生缺牙時,在不足的支台齒或植體無法有效支撐獨立補綴物、顎骨牙周狀態不佳、增加觸感及經濟等考量因素下,植體與自然牙不可避免需考慮相互連結以達成治療效果。而使用自然牙植體連結支持系統在牙周支持狀態不佳時的整體結構穩定性,主要的影響因素包含不同植體系統的選用、連結自然牙數目的選定、咬合力大小及方向。故有必要針對上述因素進行在不同牙周狀態下將自然牙與不同植體系統連結時是否多連結一顆自然牙與咬合力調整之生物力學行為探討。因此本研究結合CT、Micro-CT及電腦輔助工程設計(CAD)等技術建構自然牙/植體連結支持系統實體模型進行牙周膜線性與非線性分析之多參數探討(包括兩種牙周支持狀態、三種植體系統、兩種連結自然牙數目、六種負載給定) ,而本研究也利用小負載進行牙周膜線性與非線性情況之比較,並利用變異數分析計算牙周膜線性狀況下之各個影響因子所佔權重百分比。研究結果顯示,牙周膜線性條件下靜態模擬分析時影響連結支持系統最顯著因子為負載給定(至少為63%),當降低橋體負載時整體系統產生的應力值較小,且側向力因彎矩效應使得整體系統有較大應力值產生。而進一步探討發現每組負載下,影響最顯著的因子為植體系統,由於Lifecore、ITI及Frialit-2植體系統外部、內部構造及組合形式不同,造成植體植入連結支持系統時於系統產生的支點位置不同。因此植入ITI系統時,則使下顎骨產生較大應力;植入Lifecore系統時,造成補綴物應力值上升,而植入Frialit-2系統時,則在植體內部產生較大應力。而針對植體與自然牙端動搖度差異之探討,結果顯示無論在牙周是否降低狀態下,連結兩顆自然牙整體系統產生之動搖度皆較連結一顆小,但無法判斷牙周降低時系統產生的動搖度是否較正常牙周大。另外在小負載牙周膜線性與非線性之分析比較下,其結果顯示對於下顎骨、補綴物及植體系統產生的應力值皆有相同之趨勢,但非線性模擬於各部位產生之應力值皆大於線性模擬之結果。整體而言,為避免連結支持系統造成骨質流失及系統產生較大應力,會建議臨床醫師進行治療時,透過咬合調整方式盡量減少咬合面承受過大的側向咬合力,而在植體系統選用方面,會建議使用One-piece植體系統,此外牙周是否降低狀態下,建議皆為連結兩顆自然牙較能使系統穩定。
Although osseointegrated implants are accepted as one of the major treatment concepts for restoring partially edentulism in clinical protocols, whether implants should be connected to natural teeth when clinical treatment is planned remains contentious. The major factor of the overall structural stability of using a natural tooth/implant connection and a support system in a poor periodontal supporting condition includes the selection of different implant systems, the selection of connecting a number of natural teeth, and the magnitude and direction of the bite force. Therefore, it is necessary to determine whether or not to connect another natural tooth or adjust the bite force when the natural tooth is connected to different implant systems under different periodontal support conditions based on the aforementioned factors and study the biomechanical behavior. The study incorporates technologies of CT, Micro-CT and Computer Aided Design (CAD) to construct a physical model of natural tooth/implant connection support system for the purpose of investigating the parameters of the linear and non-linear analysis of periodontal ligament (including two periodontal support conditions, three implant systems, two connection numbers, and six loadings). Small loading conditions are also conducted in the study to compare the linear and non-linear of the periodontal ligament. A variable analysis is employed to calculate the percentage contribution of impact factors affecting the linear of periodontal ligament. The result of static simulation analysis indicates that under the linear criteria of periodontal ligament the loadings are the most significant impact factor (at last 63%). The stress value of the overall system is smaller when the loading on the pontic is reduced. In addition, due to the moment effect, a greater stress value is observed for the system under a lateral force. Further investigation of each group of loading indicates that the most significant impact factor is the implant system. Due to different internal and external structures and composition forms of Lifecore, ITI and Frialit-2 implant systems, the branch point of each implant system also varies when placed implants into the connection support system. Therefore, the implantation of ITI system cause a greater stress on the alveolar bone; implantation of Lifecore system cause an increase in stress on the prosthetic, and the implantation of Frialit-2 system cause a greater stress in the interior of the implant. However, focusing on the discussion on the difference between degree of fluctuation of natural tooth and implant, the result showed that regardless of whether there is compromise in the periodontal support, the degree of fluctuation produced by the integrated system of splinting two natural teeth together is smaller than that produced by splinting one, but it is unable to determine whether the degree of fluctuation produced by the system in compromised periodontal support is greater compared to the normal periodontal support. On the other hand, the results of the linear and nonlinear analysis of PDL under small loading showed that the stress of bone, prosthesis and implant systems have the same trend. However, the results of stress produced by each part under non-linear simulations all greater than the result of linear simulations. On the whole, to attaining a proper occlusal scheme design or selective occlusal adjustments to reduce the lateral occlusal force is recommended. Moreover, in choosing the implant system, the Lifecore system is recommended. Besides, whether periodontal support is under normal or compromised state connecting two teeth is recommended to make the system more stable.
指導教授推薦書
口試委員會審定書
長庚大學碩博士論文著作授權書
誌謝 iii
中文摘要 iv
英文摘要 ..vi
目錄 viii
表目錄 .xi
圖目錄 .xii
第一章 緒論 1
1.1研究背景 1
1.1.1牙齒構造與功能概述 1
1.1.2牙齒缺損因素與下顎後牙區相鄰兩顆缺牙之治療 5
1.1.3臨床使用連結支持系統情況及衍生問題 10
1.1.4牙周支持狀態概述 14
1.1.5連結系統參數設計 17
1.1.6電腦輔助工程分析 24
1.1.7電腦模擬分析之影響條件 27
1.2研究動機 28
1.3文獻回顧 29
1.3.1牙周支持狀態下之生物力學相關文獻 29
1.3.2不同植體系統外型設計 31
1.3.3牙周膜線性/非線性 33



1.3.4文獻總結 36
1.4研究目的 37

第二章 材料與方法 .39
2.1研究流程概述 39
2.2自然牙/不同植體支持系統模型建構 41
2.2.1支台齒/補綴物印模脫臘鑄造 41
2.2.2下顎骨及牙齒醫學影像掃瞄處理 44
2.2.3植體系統電腦輔助工程設計 49
2.2.4牙科植體有限元素模型建構與收斂性測試 52
2.3自然牙/不同植體支持系統之電腦模擬參數分析 64
2.3.1有限元素非線性模擬分析 64
2.4連結支持系統之變異數與位移量分析統計 74
2.4.1連結支持系統之變異數分析統計 75
2.4.1連結支持系統之位移量分析統計 76
第三章 結果 .76
3.1有限元素模型建構 76
3.2有限元素模型收斂性測試結果 77
3.2.1總應變能結果 77
3.2.2位移量結果 77
3.3電腦模擬分析結果 82
3.3.1牙周膜線性靜態結構模擬之變異數分析 82
3.3.2牙周膜線性之靜態結構模擬分析結果 101
3.4牙周膜非線性之靜態結構模擬分析結果 111
第四章 討論 .115
4.1電腦模擬分析 115
4.1.1有限元素模型外型 115



4.1.2邊界條件與負荷條件設定 117
4.2電腦模擬分析結果之變異數分析統計 118
4.2.1牙周膜線性靜態模擬分析之變異數分析 118
4.2.2牙周膜線性靜態模擬分析之位移量統計分析 120
4.2.3牙周膜非線性靜態模擬分析之變異數分析 121
4.3有限元素模擬分析假設與限制 123
4.3.1基本假設 123
4.3.2負載條件 124
4.3.3牙周膜非線性模擬 125
4.3.4模型驗證與收斂性測試 126
第五章 結論 .127
參考文獻 .128
附錄A 英文論文文稿
附錄B 研討會論文文稿





表目錄
表 1、牙周膜線性材料特性 35
表 2、牙齒解剖型態學與研究中所選用牙齒之尺寸 42
表 3、各組模型參數設定 55
表 4、收斂性測試之有限元素模型節點、元素及接觸性元素數目 56
表 5、各材料特性 66
表 6、電腦模擬分析組數表 67
表 7、收斂性總應變能及位移量結果 79
表 8、下顎骨硬質骨、補綴物及植體系統之最大等效應力值 86
表 9、靜態模擬分析之各參數影響比例 90
表 10、靜態模擬分析之下顎骨應力值各參數影響比例 91
表 11、靜態模擬分析之補綴物應力值各參數影響比例 92
表 12、靜態模擬分析之補綴物應力值各參數影響比例 93
表 13、第一、第二小臼齒與植體系統之補綴物位移量與位移比 103
表 14、牙周膜線性與非線性於小負載給定之結果 112



圖目錄
圖 1-1、口腔上顎齒構造示意圖 4
圖 1-2、牙齒構造示意圖 4
圖 1-3、牙齒缺損情況 7
圖 1-4、傳統固定局部義齒之補綴方式 8
圖 1-5、人工植牙程序 9
圖 1-6、植體與自然牙簡要示意圖 12
圖 1-7、植體周邊骨質流失狀態示意圖 12
圖 1-8、植體與補綴物斷裂情況 13
圖 1-9、牙周支持狀態示意圖 16
圖 1-10、植體系統種類 22
圖 1-11、不同牙周狀態下連結自然牙數目示意圖 23
圖 1-12、有限元素分析之流程圖 26
圖 2-1、研究流程圖 40
圖 2-2、支台齒/補綴物印模脫蠟鑄造流程 43
圖 2-3、SKYSCAN 1076 示意圖 47
圖 2-4、牙周病之下顎骨建構流程 48
圖 2-5、植體系統內部尺寸擷取 50
圖 2-6、利用CAD建構出的植體模型 51
圖 2-7、連結支持系統之有限元素模型 57
圖 2-8、各植體系統有限元素模型 59
圖 2-9、植體系統各元件間接觸性設定示意圖 61
圖 2-10、收斂性測試之網格尺寸 62
圖 2-11、N1、N2與N3為擷取位移量之節點 63
圖 2-12、負載給定示意圖 71
圖 2-13、邊界條件示意圖 72
圖 2-14、牙周膜非線性曲線圖 73
圖 3-1、收斂性測試之總應變能曲線 80
圖 3-2、收斂性測試之位移量曲線 81
圖 3-3、牙周膜線性靜態模擬分析各參數之主要影響因子曲線圖 94
圖 3-4、LOADING 1負載模擬分析各參數主要因子影響線圖 95
圖 3-5、LOADING 2負載模擬分析各參數主要因子影響線圖 96
圖 3-6、LOADING 3負載模擬分析各參數主要因子影響線圖 97
圖 3-7、LOADING 4負載模擬分析各參數主要因子影響線圖 98
圖 3-8、LOADING 5負載模擬分析各參數主要因子影響線圖 99
圖 3-9、LOADING 6負載模擬分析各參數主要因子影響線圖 100
圖 3-10、LIFECORE植體系統之應力分佈圖 107
圖 3-11、ITI植體系統之應力分佈圖 108
圖 3-12、FRIALIT-2植體系統之應力分佈圖 109
圖 3-13、各種植體系統位移量比值之直方圖 110
圖 3-14、牙周膜線性與非線性於小負載條件下之應力分佈圖 113
圖 3-15、小負載條件下各部位應力值曲線圖 114
[1] Cavicchia F, Bravi F. Free-standing vs tooth-connected implant-supported fixed partial restorations: a comparative restospective clinical study of the prosthetic results. International Journal of Oral & Maxillofacial Implants. 1994; 9: 711.
[2] Branemark P-I, Breine U, Adell R, et al. Intra-osseous anchorage of dentalprostheses. I. Experimental studies. Scandinavian Journal of Plastic & Reconstructive Surgery & Hand Surgery. 1969; 3: 81-100.
[3] Adell R, Lekholm, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal of Oral & Maxillofacial Surgery. 1981; 6: 387-416.
[4] Zarb GA. Introduction to osseointegration in clinical dentistry. Journal of Prosthetic Dentistry. 1983; 49: 824.
[5] Laufer BZ, Gross M. Splinting osseointegrated implants and natural teeth in rehabilitation of partially edentulous patients. Part II: principles and applications. Journal of Oral Rehabilitation 1998; 25: 69.
[6] Becker CM, Kaiser DA, Jones JD. Guidelines for splinting implants. Journal of Prosthetic Dentistry 2000; 84: 210.
[7] Gross M, Laufer BZ. Splinting osseointegrated implants and natural teeth in rehabitation of partially edentulous patients. Part I: laboratory and clinical studies. Journal of Oral Rehabilitation 1997; 24: 863.
[8] Rangert B, Sullivan DY. Mechanical aspects of a Branemark implant connected to a natural tooth: an in vitro study. International Journal of Oral and Maxillofacial Implants 1991; 6: 177.
[9] El Charkawi HG, Zekry KA, El Wakad MT. Stress analysis of different osseointegrated implants supporting a distal extension prosthesis. Journal of Prosthetic Dentistry 1994; 72: 614.

[10] Kayacan R, Ballarini R, Mullen RL. Theoretical study of the effects of tooth and implant mobility difference on occlusal force transmission in tooth/ implant-supported partial prostheses. Journal of Prosthetic Dentistry 1997; 78: 391.
[11] Rangert B. Biomechanics of the Branemark system. Australian Prosthodontic Journal. 1995; 9:39-48.
[12] Khraisat A. Abu-Hammad O. Al-Kayed AM. Dar-Odeh N. Stability of the implant/abutment joint in a single-tooth external-hexagon implant system: clinical and mechanical review. Implant Dentistry & Related Research. 2004; 6:222-9.
[13] Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. Journal of Prosthetic Dentistry. 1999; 81:159-66.
[14] Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. International Journal of Oral & Maxillofacial Implants. 2000; 15 :519-26.
[15] Lin CL, Wang JC, Kuo YC. Numerical simulation on the biomechanical interactions of tooth/implant-supported system under various occlusal forces with rigid/non-rigid connections. Journal of Biomechanics 2006; 39: 453-463.
[16] Nyman S, Ericsson I: The capacity of reduced periodontal tissue to support fixed bridgework. Journal of Clinical Periodontology 1982; 9: 409-414.
[17] Nyman SR, Lang NP. Tooth mobility and the biological rationale for splinting teeth. Journal of Periodontology 2000 1994;4:15-22.
[18] Yang HS, Chung HJ, Park YJ: Stress analysis of a cantilevered fixed partial denture with normal and reduced bone support. Journal of Prosthetic Dentistry 1996; 76: 424-430.
[19] Wang CH, Lee HE, Wang CC, Chang HP: Methods to improve a periodontally involved terminal abutment of a cantilever fixed partial denture – a finite element stress analysis. Journal of Oral Rehabilitation 1998; 25: 253-257.
[20] Wylie RS, Caputo AA: Fixed cantilever splints on teeth with normal and reduced periodontal support. Journal of Prosthetic Dentistry 1991; 66: 737-742.
[21] Yang HS, Lang LA, Felton DA: Finite element stress analysis on the effect of splinting in fixed partial dentures. Journal of Prosthetic Dentistry 1999; 81: 721-728.
[22] Giulio M, Alexei M, Marco M, Massimo L, Giulio P. Tooth–implant connection: some biomechanical aspects based on finite element analyses. Clinical Oral Implants Research 2002; 13:334–341.
[23] Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. Journal of Oral Implantology. 1998; 24:80-8.
[24] Rangert B, Gunne J, Sullivan DY. Mechanical aspects of a Branemark implant connected to a natural tooth: an in vitro study. International Journal of Oral & Maxillofacial Implants. 1991; 6:177-86.
[25] Burguete RL, Johns RB, King T, Patterson EA. Tightening characteristics for screwed joints in osseointegrated dental implants. Journal of Prosthetic Dentistry. 1994; 71:592-9.
[26] Khraisat A, Abu-Hammad O, Al-Kayed AM, Dar-Odeh N. Stability of the implant/abutment joint in a single-tooth external-hexagon implant system: clinical and mechanical review. Clinical Implant Dentistry & Related Research. 2004; 6:222-9.

[27] Schwarz MS. Mechanical complications of dental implants. Clinical Oral Implants Research. 2000; 11:156-158.
[28] Misch CE. Principles for screw-retained prosthesis. In: Misch, C.E. (Ed.), Contemporary Implant Dentistry. Mosby, St. Louis, Missouri, 1999; 575–598.
[29] Haas R. Mensdorff-Pouilly N. Mailath G. Watzek G. Branemark single tooth implants: a preliminary report of 76 implants. Journal of Prosthetic Dentistry.1995; 73 :274-279.
[30] Anonymous. US markets for dental implants 2001: executive summary. Implant dentistry.2001; 10: 234-237.
[31] Levine RA. Clem DS. Wilson Jr TG. Higginbottom F. Solnit G. Multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: Preliminary results at 6 or more months of loading. International Journal of Oral Maxillofacial Implants. 1997; 12:237-242.
[32] Levine RA. Clem DS. Wilson Jr TG. Higginbottom F. Saunders SL. A multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: results of loading for 2 or more years. International Journal of Oral Maxillofacial Implants. 1999; 14:516-520.
[33] Behneke A. Behneke N. Hoedt B. The longitudinal clinical effectiveness of ITI solid-screw implants in partially edentulous patients: a 5-year follow-up report. International Journal of Oral Maxillofacial Implants. 2000; 15: 633-645.
[34] Dincer B. Sinan M. Ali M. Evaluation of load transfer characteristics of five different implants in compact. Journal of Prothetic Dentistry. 2004; 92: 6523-530.



[35] Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. Journal of Prosthetic Dentistry. 1999; 81:159-66.
[36] Merz BR. Hunenbart S. Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. International Journal of Oral & Maxillofacial Implants. 2000; 15:519-26.
[37] Morgan KM. Chapman RJ. Retrospective analysis of an implant system. Compendium of Continuing Education in Dentistry. 1999; 20:609-614.
[38] Sutter F, Weber HP. Sorensen J. Belser U. The new restorative concept of the ITI dental implant system: design and engineering. International Journal of Periodontics Restorative Dentistry .1993; 13:409-431.
[39] Dincer B. Sinan M. Mechanics of the tapered interference fit in dental implants. Journal of Biomechanics 2003; 36: 1649-1658.
[40] Lin CL. Chang SH. Chang WJ. Kuo YC. Factorial analysis of variables influencing mechanical characteristics of a single tooth implant placed in the maxilla using finite element analysis and the statistics-based Taguchi method. Eurpean Journal of Oral Science 2007; 115:408-416
[41] Nishihira M. Yamamoto K. Sato Y. Natali AM. Mechanics of periodontal ligament. Dental Biomechanics 2003; 20-34.
[42] Nariyuki M. Makoto S. Shohei K. Noriyuki W. Three-dimensional stress analysis of tooth/implant-retained long-span fixed dentures. The International Journal of Oral and Maxillofacial Implant. 2007;22:710-718.


[43] Yoshida M. Koga Y. Peng CL. Tanaka E. Kobayashi K. In vivo measurement of the elastic modulus of the human periodontal ligament. Medical Engineering and Physics. 2001;23:567-572
[44] Cattaneo PM. Dalstra M. Melsen B. The Finite Element Method: a Tool to Study Orthodontic Tooth Movement. Journal of Dental Research 2005 ; 84:428-433.
[45] Lin CL. Chang CH. Cheng CS. Wang CH. Lee HE. Automatic finite element mesh generation for maxillary second premolar. Computer Methods and Programs in Biomedicine 1999; 59:187–195.
[46] Huang HL. Huang JS. Ko CC. Hsu JT. Chang CH. Chen YC. Effects of splinted prosthesis supported a wide implant or two implants: a three-dimensional finite element analysis. Clinical Oral Implants Research 2005; 16 :466-472.
[47] Ko CC. Chu CS. Chung KH. Lee MC. Effect of posts on dentin stress distribution in pulpless teeth. Journal of Prosthetic Dentistry 1992;67: 421-427.
[48] Dar FH. Meakin JR. Aspden RM. Statistical methods in finite element analysis. Journal of Biomechanics. 2002; 35:1155-61.
[49] Lee HE. Lin CL. Wang CH. Cheng CH. Chang CH. Stresses at the cervical lesion of maxillary premolar-a finite element investigation. Journal of Dental Research 2002;30: 283-290.
[50] Lin CL. Chang YH. Lin YF. Combining structural-thermal coupled field FE analysis and the Taguchi method to evaluate the relative contributions of multi-factors in a premolar adhesive MOD restoration. Journal of dentistry 2008;36: 626-636.
[51] Lin CL. Wang JC. Chang WJ. Biomechanical interactions in tooth-implant-supported fixed partial dentures with variations in the number of splinted teeth and connector type: a finite element analysis. Clinical Oral Implants Research 2008;19:107-117.
[52] Lin CL. Chang SH. Wang JC. Chang WJ. Mechanical interactions of an implant/tooth-supported system under different periodontal supports and number of splinted teeth with rigid and non-rigid connections. Journal of Dentistry. 2006;34:682-691.
[53] Verdonschot N. Fennis WM. Generation of 3-D Finite Element Models of Restored Human Teeth Using Micro-CT Techniques. International Journal of Prosthodontics 2001;14: 310-315.
[54] Woelfel JB. Dental anatomy: Its relevance to dentistry 1997: 179
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top