跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃少甫
研究生(外文):Shao Fu Huang
論文名稱:根管治療牙齒/人工植體連結系統之生物力學分析
論文名稱(外文):Biomechanical Analysis of an Implant Splinted to Endodontically treated Tooth
指導教授:林峻立林峻立引用關係
指導教授(外文):C. L. Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:123
中文關鍵詞:根管治療人工植體有限元素法
外文關鍵詞:endodonticimplantfinite element method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
臨床上,當自然牙與人工植體相鄰時,在某些生理解剖條件下將不避免的需利用固定式牙橋的方式將兩者連結,然而由於兩端的動搖度不同導致臨床上發生補綴牙冠脫落、植體支台鬆脫/斷裂、骨質流失等等的失敗病例,然後若植體所連結的對象為經過根管治療後之結構、強度均較自然牙脆弱之根管治療牙齒,其生物力學行為則更加複雜,可能導致治療失敗的原因包括根柱冠心的脫落、牙根斷裂、植體鬆脫/斷裂、骨質流失、牙冠脫落等等現象,除此之外是否有其他之失敗現象尚無一定論,就目前所遭遇之臨床失敗病例除上述幾種以外,尚有因黏著層崩解破裂造成補綴牙冠連同根柱脫落之現象,因此關於其破裂模式亦需進一步探討。而影響根管治療牙齒/植體連結系統失敗之原因可能包括咬合方式、連結之植體系統種類、黏著層材料強度等等,為進一步瞭解其失敗原因及破壞模式,故有必要針對影響根管治療牙齒/植體連結系統之參數以及連結系統之力學行為及破壞模式進行探討。因此本研究將利用CT、Micro-CT及電腦輔助設計(CAD)等技術建構根管治療牙齒/人工植體連結系統之有限元素實體模型並針對以下參數進行有限元素靜態模擬分析:參數一、咬合負載:(1)牙齒端側向負載100N及植體端側向負載200N;(2) 牙齒端軸向負載100N及植體端軸向負載200N;(3) 牙齒端側向負載100N;(4) 牙齒端軸向負載100N;參數二、植體系統:(1) ITI;(2) Prima;(3) Frialit-2。且為了進一步瞭解黏著層破裂崩解造成補綴牙冠連同根柱脫落之現象,本研究亦結合有限元素法提供之元素增生/隱沒技術及參數化語言開發出可模擬黏著層破裂成長模式,並以體外實驗進行趨勢比對。研究結果顯示,當根管治療牙齒連結人工植體後,系統之動搖度有明顯之降低,而當負載條件為側向咬合時,系統中之牙本質、根柱冠心、植體系統、下顎骨及黏著層的應力值均較軸向負載高(約1.5-10倍)。而進一步探討發現由於植體系統內外部構造、支台/植體連接方式不同,造成植體植入後造成之應力分佈、傳遞方式均不同;在同一負載下,連結ITI植體系統時,在下顎骨及黏著層有較高之應力分佈,而連結Friali-2植體系統時,對牙本質、根柱冠心及人工植體系統本身有較高之應力趨勢。而在黏著層破裂成長模擬部份,則發現系統中之黏著層初始破壞點主要位於植體端之補綴物/植體支台之黏著介面底部,並隨著每一次的疊代計算,發現其破裂成長方向將由補綴物/支台底部開始漸漸往上及往植體舌側破裂,且亦漸漸往牙齒端延伸。而體外實驗的部份,經過動態疲勞負載的的實驗樣本,以染色切片的方式取得植體及根管治療牙齒切面,並以顯微鏡進行黏著層破壞之微滲漏情形,同樣發現植體端之補綴物體/植體支台底部有染劑滲透發生,而在牙齒端之補綴物/剩餘齒質黏介面底部亦有些微滲透現象。整體而言,若將根管治療後的牙齒與相鄰的人工植體以連結的方式進行治療,則有較佳的改善,包括動搖度降低以及根柱、牙根的應力降低;然而,對黏著層、植體及週邊骨質而言,將造成其應力的增加,因此可能有植體斷裂、骨質流失以及黏著層崩解破裂而導致補綴物脫落失敗的可能,尤其在當連結系統承受側向負載時更為明顯,根據上述結果,建議臨床醫師在調整咬合時,應減少連結系統在側向的咬合負載,而連結的植體系統建議選用one-piece形式的植體為較佳。此外,應注意黏著層的崩解破壞導致補綴物脫落的現象,建議選用黏著強度較高的黏著劑為佳。
Structure strength is a major complication for endodontically treated teeth that usually restored with post and core to recover its function. While endodontically treated tooth is splinted to an implant in edentulous region for some clinical situations, complex biomechanical aspects of an endodontically treated tooth/implant-supported system are derived from the dissimilar mobility between the osseointegrated implant and the tooth and the weak structure strength of endodontically abutment tooth. Significant problems such as, loss of osseointegration, abutment screw loosening, prosthesis fracture and adhesive interface debonding between tooth and post arise due to the higher bending moment caused by the cantilever effect especially for the case of compromised periodontal support (not enough post length in alveolar bone). The aim of this study was to investigate the biomechanical aspects for endodontically treated tooth splinted to different implant system (ITI, Prima and Frialit-2 implant system) under four loading conditions: (1)OTOI: 100N oblique load (45o) on tooth and 200N oblique load on implant, (2)OT: 100N oblique load (45o) on tooth, (3)ATAI: 100N axial load on tooth and 200N axial load on implant, (4)AT: 100N axial load on tooth, using non-linear finite element (FE) approach. Moreover, to simulation the crack propagation of the cement, element birth and death technique and parametric design language provided in FE method was then adopted. The results showed the higher stability of the system after endodontically treated tooth splinted to the implant system but the stress values of the implant system, alveolar bone, and adhesive cement also increased. In addition, the stress values in the remaining dentin, post and core, implant system, alveolar bone and adhesive cement increased significantly for splinted system with receiving oblique load. On the other hand, the stress values of bone and cement increased when splinting to ITI implant, and the stress values of dentin, post, and implant system itself increased when splinting to Frialit-2 implant system . As for the crack propagation of the cement, the results showed that the initial crack of the cement lied on the bottom between the prosthesis and abutment, and the crack grew upward along the abutment, then turn toward to the cement between prosthesis and remaining tooth. On the whole, occlusal adjustments need to perform to reduce lateral load for decreasing the stress distribution in different components (bone, adhesive cement, prosthesis and implant) of the splinted system. Moreover, in choosing the implant, the Prima system is recommended.
目錄
指導教授推薦書
口試委員會審定書
長庚大學碩博士論文著作授權書
誌謝 IV
中文摘要 V
ABSTRACT VII
第一章 緒論 1
1.1研究背景 1
1.1.1根管治療 1
1.1.2根柱冠心 1
1.1.3圍箍效應 2
1.1.4人工植體 7
1.1.5自然牙與人工植體連結系統 11
1.1.6根管治療後牙齒與人工植體連結系統 11
1.1.7探討根管治療牙齒/植體連結系統之研究方法 12
1.1.8 元素增生/隱沒技術 15
1.2研究動機 16
1.3文獻回顧 17
1.3.1不同人工植體設計 17
1.3.2破裂成長模擬分析 19
1.3.3文獻總結 21
1.4研究目的 22
第二章研究方法 23
2.1研究流程概述 23
2.2有限元素模型建構 24
2.2.1支台齒/補綴物備製 24
2.2.2顎骨臼齒補綴物掃描 24
2.2.4系統有限元素模型建構 29
2.3非線性有限元素靜態模擬分析 34
2.4破裂成長模擬分析 39
2.5動態疲勞測試與破壞檢測 41
2.5.1實驗試件製備 41
2.5.2各組試件動態疲勞測試 42
2.5.3各組試件破壞檢測 43
2.6電腦模擬分析及體外實驗比對驗證 44
第三章 結果 47
3.1有限元素靜態模擬分析 47
3.1.1根管治療牙齒/人工植體分析結果比較 47
3.1.2根管治療牙齒/人工植體連結系統分析結果 57
3.2有限元素破裂成長模擬分析與體外實驗 64
3.2.1有限元素破裂成長模擬分析 64
3.2.2體外實驗 65
3.2.3電腦模擬分析與體外實驗結果比較 70
第四章 討論 71
4.1 電腦模擬分析結果討論 71
4.1.1 靜態模擬分析 71
4.1.2黏著層之破裂成長模擬分析 73
4-2動態疲勞破壞實驗 74
4.3研究限制與未來方向 74
第五章結論 77
參考文獻 79

表目錄
表一、有限元素材料特性 36
表二、有限元素分析參數及組數 37
表三、根管治療牙齒端與人工植體端之補綴物位移量及位移比 49
表四、根管治療牙齒/人工植體連結與未連結系統之各部位應力值 51

圖目錄
圖 1-1 牙齒構造圖 4
圖1-2 根管治療過程:(A)牙髓受創;(B)開口製備;(C)根管清創修形;(D)牙冠補綴 4
圖1-3根柱冠心 5
圖1-4圍箍設計 5
圖1-5圍箍作用:(A)抵抗咬合造成之槓桿力量;(B)抵抗根柱置入造成之楔形作用及側向力量 6
圖1-6牙根及根柱受力因彎曲度不同造成應力集中 6
圖1-8各類人工植體系統 10
圖1-7人工植體與自然牙 10
圖1-9根管治療牙齒/人工植體連結系統 14
圖1-10有限元素分析流程 14
圖2-1 研究流程圖 23
圖2-2試件製備:(A)完整小臼齒蒐集;(B)小臼齒定位包埋;(C)小臼齒根管修形;(D)補綴物鑄造黏著 27
圖2-3 MICRO-CT掃瞄儀器:SKYSCAN 1076 27
圖2-4小臼齒影像掃瞄重組及輪廓擷取:(A)MICRO-CT影像;(B)影像輪廓擷取;(C)影像重組平滑化;(D)輪廓資料規劃擷取 28
圖2-5植體系統三維 CAD模型建構:(A) 植體MICRO-CT影像掃描及尺寸量測;(B) PRIMA IMPLANT;(C) ITI IMPLANT;(D) FRIALIT-2 IMPLANT 28
圖2-6 (A)根管治療牙齒/人工植體連結系統之有限元素模型及不同人工植體系統;(B) 根管治療牙齒/人工植體牙冠無連結之有限元素模型 31
圖2-7 根管治療牙齒/人工植體連結系統剖面及組成元件 32
圖2-8 根管治療牙齒/人工植體有限元素模型網格化 33
圖2-9植體內部元件接觸部份:(A) FRIALIT-2系統:接觸部分介於支台、螺絲及植體兩兩之間;(B) ITI系統:接觸部份介於支台與植體之間。 38
圖2-10 有限元素模型負載與邊界條件:(A)負載方式;(B)邊界條件  38
圖2-11 (A)材料破裂成長模擬程式界面;(B)材料破壞模擬程式疊代運算流程圖 40
圖2-12 疲勞試驗儀器/試件架設圖 45
圖2-13試件切片染色過程:(A)試件染色;(B)二次包埋;(C) 試件切片觀察 46
圖3-1、根管治療牙齒與人工植體連結/未連結系統之位移比直方圖:(A) ITI;(B) PRIMA;(C) FRIALIT-2      50
圖3-2、根管治療牙齒與人工植體連結/未連結系統之牙本質應力直方圖:(A) ITI;(B) PRIMA;(C) FRIALIT-2 52
圖3-3、根管治療牙齒與人工植體連結/未連結系統之根柱冠心應力直方圖:(A) ITI;(B) PRIMA;(C) FRIALIT-2 53
圖3-4、根管治療牙齒與人工植體連結/未連結系統之人工植體應力直方圖:(A) ITI;(B) PRIMA;(C) FRIALIT-2 54
圖3-5、根管治療牙齒與人工植體連結/未連結系統之下顎骨應力直方圖:(A) ITI;(B) PRIMA;(C) FRIALIT-2 55
圖3-6、根管治療牙齒與人工植體連結/未連結系統之黏著層應力直方圖:(A) ITI;(B) PRIMA;(C) FRIALIT-2 56
圖3-7、根管治療牙齒連結不同植體在不同負載下之各材料之應力直方圖:(A)牙本質;(B)根柱冠心;(C)人工植體;(D)週邊骨質;(E)黏著層。 59
圖3-8、根管治療牙齒/人工植體連結系統之牙本質、根柱、下顎骨及黏著層之應力分佈圖:(A)牙本質及根柱冠心;(B)下顎骨;(C)黏著層 60
圖3-9、根管治療牙齒連結ITI 植體系統應力分佈:(A)整體系統剖面圖;(B)植體應力分佈圖;(C)補綴物及植體週邊骨質應力分佈圖。 61
圖3-12、負載為OTOI時,黏著層破裂成長模擬迭代結果 66
圖3-13、負載為OT時,黏著層破裂成長模擬迭代結果 67
圖3-14、負載為AT時,黏著層破裂成長模擬迭代結果 68
圖3-15、利用光學顯微鏡觀察根管治療牙齒/人工植體連結系統之黏著層介面破裂及染劑滲漏情況:(A)根管治療牙齒補綴物/剩餘齒質之微滲漏;(B)植體之補綴物/支台介面微滲漏。 69
[1] Christensen GJ. “When to use fillers, build-ups or posts and cores.” J Am Dent Assoc. 1996;127:1397.
[2] Carter JM, Sorensen SE, Johnson RR, Tietelbaum RL, Levene MS. “Punch shear testing of extracted vital and endodontically treated teeth. “ J of Biomech. 1983;16:841.
[3] Zhi-Yue L, Yu-Xing Z. “Effect of post-core design and ferrule of fracture resistance of endodontically treated maxillary central incisors.” J Prosthet Dent. 2003;89:368.
[4] Fraga RC, Chaves BT, Mello GS, Siquera JF Jr. “Fracture resistance of endodontically treated roots after restoration.” J Oral Rehabil. 1998;25:809.
[5] Kishen A, kumar GV, Chen NN. “Stress –strain response in human dentine: rethinking fracture predilection in post-core restored teeth.” Dent Traumatol. 2004;20:90.
[6] Sirimai S, Riis DN, Morgano SM. “An in vitro study of the fracture resistance and the incidence of vertical root fracture of pulpless teeth restored with six post-and-core systems.” J Prosthet Dent. 1999;81: 262.
[7] Fernandes AS, Dessai GS “Factors affecting the fracture resistance of post-core reconstructed teeth: a review.” Int J Prosthodont. 2001;14: 355.
[8] Sorensen JA, Engleman MJ. “Ferrule design and fracture resistance of endodontically treated teeth.” J Prosthet Dent. 1990;63:529.
[9] Nichollos JI, Libman WJ. “Load fatigue of teeth restored with cast posts and cores and complete crowns.” Int J Prosthodont. 1995;8:155.
[10] Morgano SM, Brackett SE. “Fundation restorations in fixed prosthodontics: current knowledge and future needs.” J Prosthet Dent. 1999;82:643.
[11] “The Golssary of prosthodontic term.” 8th ed. J Prosthet Dent. 2005;94:38.
[12] Balkenhol M, Wöstmann B, Rein C, Ferger P. “Survival time of cast post and cores: A 10-year retrospective study.” J Dent. 2007;35:50.
[13] Ho MH, Lee SY, Chen HH, Lee MC. “Three-dimension finite element analysis of the effects of posts on stress distribution in dentin.” J Prosthet Dent. 1994;72:367.
[14] Albuquerque Rde C, Polleto LT, Fontana RH, Cimini CA. “Stress analysis of an upper central incisor restored with different posts.” J Oral Rehabil. 2003;30:936.
[15] Pierrisnard L, Bohin F, Renault P, Barquins M. “Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis.” J Prosthet Dent. 2002;88:442.
[16] Lanza A, Aversa R, Rengo S, Apicella D, Apicella A. “3D FEA of cemented steel, glass and carbon posts in a maxillary incisors.” Dent Mater. 2005;21:709.
[17] Rangert B. “Biomechanics of the Branemark system.” Aust Prosthodont J. 1995;9:39.
[18] Khraisat A. Abu-Hammad O. Al-Kayed AM. Dar-Odeh N. “Stability of the implant/abutment joint in a single-tooth external-hexagon implant system: clinical and mechanical review.” Clin Implant Dent Relat Res. 2004;6:222.
[19] Merz BR, Hunenbart S, Belser UC. “Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection.” Int J Oral Maxillofac Implants. 2000;15:519.
[20] Norton MR. “Assessment of cold welding properties of the internal conical interface of two commercially available implant systems.” J Prosthet Dent. 1999;81:159.
[21] Laufer BZ, Gross M. “Splinting osseointegrated implants and natural teeth in rehabilitation of partially edentulous patients. Part II: principles and applications.” J Oral Rehabil. 1998;25:69.
[22] Becker CM, Kaiser DA, Jones JD. “Guidelines for splinting implants. “ J Prosthet Dent. 2000;84:210.
[23] Gross M, Laufer BZ. “Splinting osseointegrated implants and natural teeth in rehabitation of partially edentulous patients. Part I: laboratory and clinical studies.” J Oral Rehabil. 1997;24:863.
[24] Rangert B, Sullivan DY. “Mechanical aspects of a Branemark implant connected to a natural tooth: an in vitro study.” Int J Oral Maxillofac Implants. 1991;6:177.
[25] El Charkawi HG, Zekry KA, El Wakad MT. “Stress analysis of different osseointegrated implants supporting a distal extension prosthesis.” J Prosthet Dent. 1994;72:614.
[26] Kayacan R, Ballarini R, Mullen RL. “Theoretical study of the effects of tooth and implant mobility difference on occlusal force transmission in tooth/ implant-supported partial prostheses.” J Prosthet Dent. 1997;78:391.
[27] Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen YW. “Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: A non-linear finite element study.” J Dent. 2008;36:409.
[28] Ichima I, Schmidlinb PR, Kiesera JA, Swaina MV. “Mechanical evaluation of cervical glass-ionomer restorations: 3D finite element study.” J Dent. 2008;36:409.
[29] Ichim I, Kuzmanovic DV, Love RM. A finite element analysis of ferrule design on restoration resistance and distribution of stress within a root. Int Endod J. 2006;39:443.
[30] ANSYS 11.0, manual.
[31] Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. “Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction.” J Oral Implantol. 1998;24:80.
[32] Rangert B, Gunne J, Sullivan DY. “Mechanical aspects of a Branemark implant connected to a natural tooth: an in vitro study.” Int J Oral Maxillofac Implants. 1991;6:177.
[33] Burguete RL, Johns RB, King T, Patterson EA. “Tightening characteristics for screwed joints in osseointegrated dental implants.” J Prosthet Dent. 1994;71:592.
[34] Khraisat A, Abu-Hammad O, Al-Kayed AM, Dar-Odeh N. “Stability of the implant/abutment joint in a single-tooth external-hexagon implant system: clinical and mechanical review.” Clin Implant Dent Relat Res. 2004;6:222.
[35] Schwarz MS. “Mechanical complications of dental implants.” Clin Oral Implants Res. 2000;11:156.
[36] Misch CE. Principles for screw-retained prosthesis. In: Misch, C.E. (Ed.), Contemporary Implant Dentistry. Mosby, St. Louis, Missouri, 1999;575.
[37] Haas R. Mensdorff-Pouilly N. Mailath G. Watzek G. “Branemark single tooth implants: a preliminary report of 76 implants.” J Prosthet Dent. 1995;73:274.
[38] Anonymous. “US markets for dental implants 2001: executive summary.” Implant Dent. 2001;10:234.
[39] Levine RA. Clem DS. Wilson Jr TG. Higginbottom F. Solnit G. “Multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: Preliminary results at 6 or more months of loading.” Int J Oral Maxillofac Implants. 1997;12:237.
[40] Levine RA. Clem DS. Wilson Jr TG. Higginbottom F. Saunders SL. “A multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: results of loading for 2 or more years.” Int J Oral Maxillofac Implants. 1999;14:516.
[41] Behneke A. Behneke N. Hoedt B. “The longitudinal clinical effectiveness of ITI solid-screw implants in partially edentulous patients: a 5-year follow-up report.” Int J Oral Maxillofac Implants. 2000;15:633.
[42] Dincer B. Sinan M. Ali M. “Evaluation of load transfer characteristics of five different implants in compact.” J Prosthet Dent. 2004;92:6523.
[43] Norton MR. “Assessment of cold welding properties of the internal conical interface of two commercially available implant systems.” J Prosthet Dent. 1999;81:159.
[44] Merz BR. Hunenbart S. Belser UC. “Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection.” Int J Oral Maxillofac Implants. 2000;15:519.
[45] Morgan KM. Chapman RJ. “Retrospective analysis of an implant system.” Compend Contin Educ Dent. 1999;20:609.
[46] Sutter F, Weber HP. Sorensen J. Belser U. “The new restorative concept of the ITI dental implant system: design and engineering.” Int J Periodontics Restorative Dent. 1993;13:409.
[47] Dincer B. Sinan M. “Mechanics of the tapered interference fit in dental implants.” J Biomech. 2003;36:1649.
[48] Lin CL. Chang SH. Chang WJ. Kuo YC. “Factorial analysis of variables influencing mechanical characteristics of a single tooth implant placed in the maxilla using finite element analysis and the statistics-based Taguchi method.” J Oral Sci. 2007;115:408.
[49] Sattari-Far I, Javadia Y. “Influence of welding sequence on welding distortions in pipes.” Int J Pres Ves Pip. 2008;85:265.
[50] Mahapatra MM, Datta GL, Pradhan B, Mandal NR. “Modelling the effects of constraints and single axis welding process parameters on angular distortions in one-sided fillet welds.” Proc IME B J Eng Manufact e. 2007;221:397.
[51] Teng TL, Chang PH, Tseng WC. “Effect of welding sequences on residual stresses.” Comput Struct. 2003;81:273.
[52] Verma V, Baran G, Sadeghipour K, Boberick K. Effects of different cavity shapes on residual stresses in polymerized dental restoration. Proceeding of IEEE 28th Annual Northeast Bioengineering Conference. 2002;283.
[53] Liu HL, Lin CL, Sun MT, Chang YH, Liu PR. “Damage accumulation simulations in the adhesive of enamel/ceramic interface using the FE submodelling and the element deactivation approaches.” J Adhes Dent. 2009;11:199.
[54] Merz B.R., Hunenbart S., Belser U.C., “Mechanics of theimplant-abutment connection: an 8-degree taper compared to abutt joint connection.” Int J Oral Maxillofac Implants. 2000;15: 519.
[55] White, S.N., and Yu, Z. Compressive and diametral tensile strengths of current adhesive luting agents. J. Prosthet. Dent. 1993;69:568.
[56] Delong R, Douglas WH, “Development of an artificial oral environment for the testing of dental restoratives: bi-axial force and movement control.” J Dent. 1983;62:32.
[57] Sakaguchi RL, Douglas W H, DeLong R. Pintado MR. “The wear of a posterior composite in an artificial mouth: a clinical correlation.” Dent Mater. 1986;2:235.
[58] De Boever JA, McCall WD Jr, Holden S, Ash MM Jr. “Functional occlusal forces: an investigation by telemetry.” J Prosthet Dent. 1978;40:326.
[59] Gaston BA., West LA., Liewehr FR., Fernandes C., Pashley DH., “Evaluation of regional bond strength of resin cement to endodontic surfaces.” J Endod. 2001;27:321
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊