(3.236.118.225) 您好!臺灣時間:2021/05/16 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:董正威
研究生(外文):Cheng Wei Tung
論文名稱:仿生並聯桿件關節機構之路徑規劃與控制
論文名稱(外文):Trajectory Planning and Control of Bionic Parallel Link Based Joint Mechanism
指導教授:李明義李明義引用關係郭重顯郭重顯引用關係
指導教授(外文):M. Y. LeeC. H. Kuo
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:89
中文關鍵詞:仿生關節機構並聯式機構路徑追蹤人形機器人
外文關鍵詞:bionic joint mechanismparallel kinematics mechanismtrajectory trackinghumanoid robots
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般人形機器人之機構設計大多採用串聯式機構設計。觀察人類之關節結構,其大致可以分為1或3自由度之運動;其中髖關節、踝關節及腕關節為3自由度之關節,腰部和頸部關節之運動在簡化後也可視為3自由度之關節。不論是1或3自由度之關節機構,驅動馬達通常安裝於兩連結桿件之連接處,如此一來,馬達及齒輪組之尺寸將嚴格被限制住,此一現象在3自由度之關節特別明顯。因此,本論文目的為針對3自由度之關節機構,設計一以仿生學為基礎下之3自由度並聯桿件關節機構,其特色在於尺寸小、結構簡單、以球關節為運動模式、高剛性且節能。此一模組包含兩個平面板、中央固定桿件、三個線性致動器;其中,中央固定桿件直接固定於一個平面板,另一平面板採用球接頭固定。因此本論文所提出之關節模組,可以表現出類似人類3自由度關節之運動模式。由於電動缸之馬達與螺桿為不可逆運動特性,當控制器不提供馬達電源時,人形機器人仍然可維持原本姿態,此特性可以延長電池之壽命。除了機械結構設計外,本論文也進行了運動學之模擬驗證且進行軌跡規劃,並製做一實體雛型,此模組可以模仿在空間中任一平面之角度路徑規劃與即時追蹤三軸加速規感測之空間角度,最後實驗驗証了此一仿生關節設計之可行性。
Conventional humanoid robots are configured in terms of series connections. The joint motions of a human being are generally categorized as 1- and 3-mobility motions. The 3-mobility joint motions appear in the hip, ankle, and wrist. In addition, the joints of waist and neck can also be fitted into the 3-mobility joint motions for simplify. Motor actuators generally serve as active joints and driving devices for two connected links in either 1- or 3-mobility joints. However, due to space limitations of the joint design, the size of electrical motors and gear trains are strictly constrained, especially for 3-mobility joints. Therefore, this thesis proposes a bionic parallel link based joint mechanism design for 3-mobility joints to perform the features of compact size, simple mechanism structure, ball joint based actuation, high rigidity, and electrical power saving. The proposed bionic parallel link based joint is composed of two interface plates for connecting two neighboring links, a central link directly coupling two interface plates with a fixed connection and a ball joint connection, three linear screw actuators for controlling relative spatial angles of two interface plates. Consequently, the joint motion performs similar motion with the 3-mobility ball joint motions for a human being. At the same time, due to the non-reservable characteristics existed between the motor and actuation point, the humanoid robot can hold its position when the controller turns off motor powers. Such a property extends the life cycle of battery. In addition to the mechanism design, the kinematics and trajectory tracking are studied based on the simulation verifications and the practical implementations as well. Finally, a prototype for this study is made in laboratory. The bionic parallel link based joint mechanism may emulate any planner path in its workspace. Meanwhile, it can also track the spatial angle of a three-axis accelerometer in real time. These featured experiments verify the demonstrated approaches for the proposed 3-mobility based bionic joint design.
第一章 序論
1-1 研究背景與動機
1-2 研究目的
1-3 論文架構
第二章 文獻回顧
2-1 仿生關節機構設計
2-2 串聯式與並聯式機構差異性
第三章 並聯桿件關節機構設計與製作
3-1 關節機構規格制定
3-2 致動器機構設計與製作
3-3 關節機構組裝與實現
3-4 關節機構實際參數
第四章 模擬系統開發與實作
4-1 路徑規劃模擬分析
4-1-1 工作空間分析
4-1-2 逆向運動學
4-1-3 靜力學
4-1-4 極限位置
4-1-5 軌跡規劃
4-2 控制系統實現
4-3 模擬程式介面開發
第五章 系統測試與驗證
5-1 連續軌跡模擬控制測試
5-2 不連續軌跡模擬控制測試
5-3 運動關節模擬控制測試
第六章 結論與未來研究方向
6-1 結論
6-2 未來研究方向
參考文獻
[1] S. K. Au., P. Dilworth, H. Herr, “An Ankle-Foot Emulation System for the Study of Human Walking Biomechanics,” IEEE International Conference on Robotics and Automation Orlando, pp.2939-2945, 2006.
[2] T.Y. Choi, S. Jin, J.J. Lee, “Implementation of a Robot Actuated by Artificial Pneumatic Muscles,” SICE-ICASE International Joint Conference, pp.4733-4737, 2006.
[3] K. Hashimoto, T. Sawato, A. Hayashi, Y. Yoshimura, T. Asano, K. Hattori, “Static and Dynamic Disturbance Compensation Control for a Biped Walking Vehicle,” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics Scottsdale, pp.457-462, 2008.
[4] M. Honegger, A. Codourey, E. Burdet, “Adaptive Control of the Hexaglide, a 6 Dof Parallel Manipulator,” IEEE International Conference on Robotics and Automation, pp.543-548, 1997.
[5] M. Morisawa, T. Yakoh, T. Murakami, and K. Ohnishi, “A Comparison Study between Parallel and Serial Linked Structures in Biped Robot System,” IEEE Industrial Electronics Society, Vol. 4, pp. 2614-2619, 2000.
[6] D. A. Neumann, “Kinesiology of the Musculoskeletal System : Foundations for Physical,” Elsevier Health Sciences, 2002
[7] T. Takuma, S. Hayashi, K. Hosoda, “3D Bipedal Robot with Tunable Leg Compliance Mechanism for Multi-modal Locomotion,” IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Convention Center Nice, pp.1097-1102, 2008.
[8] A. Takanishi, H. Lim, Y. Ogura, H. Aikawa, K. Shimomura H. Kondo, “Development of a New Humanoid Robot WABIAN-2,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp.76-81, 2006.
[9] G. Tao, X. Zhu, B. Yao and J. Cao, “Adaptive Robust Posture Control of a Pneumatic Muscles Driven Parallel Manipulator with Redundancy,” Proceedings of the 2007 American Control Conference, pp.3408-3413, 2007.
[10] B. Vanderborght, “Torque and Compliance Control of the Pneumatic Artificial Muscles in the Biped Lucy,” IEEE International Conference on Robotics and Automation, pp.842-847, 2006.
[11] 賴昱瑋,具力控制之仿人機械手臂開發,長庚大學機械工程研究所碩士論文,民國97年
[12] 洪堯駿,具並聯式運動機構之雙足人型機器人開發,長庚大學機械工程研究所碩士論文,民國96年
[13] 邱國維,創新式雙足人形機器人行走平台設計,長庚大學機械工程研究所碩士論文,民國97年。
[14] 張智星,MATLAB程式設計與應用,清蔚科技,2000
[15] 位元文化,精通MFC視窗程式設計Visual Studio 2008版,文魁資訊,2008
[16] http://journal.fluid-power.net/journal/issue26/fprcentre26.html
[17] 祥儀網站,http://www.shayye.com.tw/
[18] http://www.mscsoftware.com.tw/products/adams/adams.htm+
[19] OSSUR網站,http://www.ossur.com/
[20] ottobock 網址,http://www.ottobock.com/
[21] 德林義肢網站,http://www.tlco.com.tw/
[22] http://www.touchbionics.com/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top