(3.238.173.209) 您好!臺灣時間:2021/05/08 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:唐鳴鋒
研究生(外文):Ming Feng Tang
論文名稱:具仿生氣控承筒之機電刺激膝上義肢雛型設計開發
論文名稱(外文):Design and prototype development of a myo-electrical stimulation above-knee bionic prosthetics with air-pressure controlled socket
指導教授:李明義李明義引用關係
指導教授(外文):M.Y.Lee
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:74
中文關鍵詞:義肢承筒膝上義肢肌電刺激仿生學義足
外文關鍵詞:prostheses for extinguishersknee prostheseselectrical
相關次數:
  • 被引用被引用:1
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統膝上義肢均屬被動式結構,能提供膝關節屈曲-背屈之活動度,
無法產生人體自然步行時膝關節瞬心移動軌跡,因此,病患穿上義
肢後常無法達到正常步態。另外,病患在接受膝上截肢後,負責腿
部屈曲與伸展之前後主肌肉群(股四頭肌、半腱肌和骨二頭肌等)以
及膝關節均被切除,且大腿組織不健全,會導致大腿肌力不足,因
此病患穿戴膝上義肢步行時,必須透過髖關節屈肌收縮才能甩動義
肢,不但造成步態異常、殘肢肌肉過度使用,也會使病患行走時能
量消耗過量。除此,病患在截肢後,因淋巴液集中於殘肢底部,又
因缺乏骨骼肌壓縮,截肢後均會產生殘肢水腫現象,而且傳統膝上
義肢之承筒與殘肢接觸面因須承載體重,易發生施力點集中,產生
患部疼痛、接觸面皮膚因磨擦破皮、潰爛甚至組織壞死的現象。再
者,病患在穿戴義肢初期,因患側猶如踩高蹺,無法由義肢感知觸
地時地面之反作用力,造成感覺回饋喪失,因而無法確切掌握步態
週期,容易造成步態不穩而跌倒。爰此,本研究係針對上述病患在
膝上截肢後產生之殘肢水腫、肌力不足、感覺缺失等問題及傳統膝
上義肢關節無法產生人體膝關節瞬心移動軌跡之設計缺失,結合氣
囊承筒與步態週期充放氣義足結構、肌電刺激肌力誘發補償模組、
腳底壓力感測回饋感覺補償模組及仿生膝關節機構之「具仿生氣控
承筒之肌電刺激式膝上義肢」,並進行功能驗證。
本研究係以三個部份來進行;第一部份為氣囊承筒與步態週期充
放氣義足結構設計,研究工作包含以Solid Words 工具軟體建構充氣
式圓筒型氣囊設計與使用TRIZ 創意設計軟體進行步態週期充放氣義
足結構設計。本研究運用萃思(TRIZ)問題創意思解方法中39 個矛
盾矩陣、40 個創意原則與功能分析原則,做為氣囊承筒條件設計限制
方法,再以系統性與邏輯性做為提示下,提出三種可調整式承筒氣囊
結構,其分別為直列交替式氣囊承筒、螺旋交替式氣囊承筒與非交替
式圓筒氣囊承筒等,其中直列交替式氣囊、螺旋交替式氣囊因充放氣
過程中,氣囊於洩氣後會因無法完全密合於殘肢,而造成壓力集中在
洩氣囊袋所形成之隙縫中,不符合本研究設計要求,因此本研究選擇
採用非交替式圓筒氣囊承筒來做為充氣氣囊結構;在氣囊之材料選擇
方面係採用TPU(熱塑性聚胺基甲酸酯)彈性材料製作,氣囊幾何外型
設計係採用勞工安全衛生研究所公佈之人體計量資料庫為依據,承筒
內各有2 組氣囊,其中位於殘肢與承筒底部為半圓球氣囊,其半徑為
90mm,另外一組氣囊係在承筒內側圓筒型氣囊,尺寸為內圓周為
560mm,厚度為,40mm,高為140mm,至於氣囊內壓力則係依據台
灣血管外科學會治療水腫之研究報告,設定充氣壓力值為50mm-Hg。
並透過氣囊內壓之調節係透過止逆安全閥來配合步態週期充放氣。本
研究所採用之充氣核心元件為金屬工業所生產的微型氣缸(型號
MCMB-11-20-80):氣缸內徑32mm,行程80mm)。步態週期充放氣
義足結構包括連接承筒及義足之中空管材及八字形義足。中空管材內
具有壓縮彈簧別作為充放氣時使用推動活塞桿之功用,義足則由鋼索
與活塞桿之連動復歸於擺盪時期之位置。
本研究第二部份為設計開發「肌電刺激肌力誘發補償模組」與「腳
底壓力感測回饋感覺補償模組」,主要工作項目包括開發肌電刺激肌
力誘發補償模組與腳底壓力感測回饋訊號感覺補償模組設計製作,
FES 電刺作動時序之程式設計係校準病患電刺激閥值後,依照病患步
態週期給予髖部伸展與屈曲肌群電刺激,當前後義足上薄膜壓組式壓
力感測元件分別接收到壓力感設值時,MSP430 單晶片經判讀後,會
給予電刺激輸出並提供病患肌電刺激;在肌電刺激時間為壓力感知器
所受壓的時間,配合病患的步態週期。在後腳跟著地時,給予髖部伸
展肌群肌電刺激,並提示病患後腳跟著地,若後腳跟與前腳跟同時著
地時,則給予髖部伸展與屈曲肌群肌電刺激,並提示病患後腳跟與前
腳跟同時著地時,最後當前腳跟要離地時,給予髖部屈曲肌群肌電刺
激,並同時告知病患,現階段為前腳跟即將離地,底部係在義足前後
測各放置一只薄膜壓組式壓力感測元件做為步態週期過程中腳底壓
力回饋FES 刺激髖部伸展與屈曲肌群,控制核心係由德州儀器
MSP430 單晶片(型號:MSP430xG4618IPZ),在細部設計中係以IAR
Embedded Workbench IDE 作為MSP430 單晶片程式撰寫工具,程式設
計把踩踏壓力分為25kg、35kg 和45kg 三個階段,分別給予觸發控制
電刺激三階段的刺激電壓輸出。
本研究第三部份主要工作項目為設計開發「仿生膝關節機構」與
「具仿生氣控承筒之肌電刺激式膝上義肢整合」。仿生膝關節之設計
係模仿正常人膝關節之運動軌跡,本研究以海龍公式來推導出計算四
連桿機構瞬時中心位置之運算方程,再以VC++公式來撰寫出以已知
三桿長求第四桿長度之作動方程式,運算四連桿機構運轉時,各角度
之瞬時中心位置,並將瞬心軌跡座標資料匯出成txt 檔格式,經由
MATLAB 套裝軟體將txt 檔內的瞬心軌跡座標資料繪製出四連桿瞬心
移動軌跡,求得最符合文獻中的瞬心軌跡之四連桿長,然後再以Solid
Works 進行干涉模擬,在膝關節設計中,第一桿主要是仿生膝關節底
座,用以連接至氣缸頂部,作為傳遞病患體重與支撐膝義肢著地期屈
屈與伸展之固定端,使負責連接承筒與傳遞病患體重之承筒底座(第
三桿)能配合病患在屈曲與伸展時其上移動,最後整合氣囊承筒與步
態週期充放氣義足結構、肌電刺激肌力誘發補償模組、腳底壓力感測
回饋感覺補償模組及仿生膝關節機構,之「具仿生氣控承筒之肌電刺
激式膝上義肢」。
因此,本研究不但完成開發「具仿生氣控承筒之肌電刺激式膝上
義肢」,可提供膝上截肢者肌電刺激、腳底壓力感測回饋感測補償,
也設計創作了更符合正常人膝關節瞬心移動軌跡之仿生膝關節機構。
關鍵詞:義肢承筒、膝上義肢、肌電刺激、仿生學、義足
The conventional above-knee prosthesis design have a well-known
feature of passive knee flexion and extension construction, the trajectory
of instant center of rotation (ICR) throughout the entire range of knee
flexion and extension different from the normal semicircular ICR
trajectory for the tibiofemoral joint during spontaneous walking,
therefore, the conventional above-knee (AK) prosthesis can not restore
the normal gait pattern. In addition, the passive knee mechanical
constuction of the conventional AK prosthesis design, allow the hip
flexor govern the hip flexion movement during walking. It make the
amputee to swing his prosthetic leg out of the way which produce a
compensatory mechanism cause abnormal gait and excessive energy
consumption during walking. Besides, the hinge of conventional AK
prosthesis with mechanical, hydraulic or pneumatic locking systems for
controling knee joint damping will only ensure knee joint stability under
a constant speed rotation. Otherwise, the abnormal kinesiology
reponse and fall will occur. In addition, intraskeletal impact forces
generated by body movement are directly transmitted from the pelvis
through conventional above-knee prosthesis will cause a higher
concentration force at the contact surface between the socket and the
relatively soft living bone. The higher contact force and continuous
impact phenomena may induce pain or tissue necrosis. In order to
breakthrough the drawbacks of the traditional design of AK prosthesis, a
biocybernetic power assisted AK bionic prosthesis was developed.
In this study, carried out in three parts; the first part for the air
cylinder for filling with the gait cycle were deflated just enough
structural design, the study includes software tools to build Solid Words
- x -
cylindrical inflatable balloon design and use of TRIZ creative design
software gait cycle gas filling the structural design of full justice. In this
study, the use of stripping thinking (TRIZ) method of solution of the
problem in a mean 39 contradiction matrix, 40 creative principles and
the principle of functional analysis, as a condition of airbag design
constraints for tube method, and then a systematic and logical as a
prompt put forward for the three adjustable tube-type airbag structure,
the alternate line of airbags for tube, spiral tube for the turn-style airbags
and airbag non-alternating cylindrical tube, such as contractors,
including alternate-line airbags, airbag spiral because of the turn-style
rechargeable deflated, the balloon will be deflated due to not fully close
together in the body, caused by pressure on the formation of China by
air bags in the gaps, do not meet the design requirements of this study,
this study, the use of non-turn-type cylinder airbag for airbag inflatable
tube to make for the structure; the material in the choice of balloon was
used TPU (thermoplastic polyurethane) flexible materials, balloon
design geometry using the Labor Safety and Health Department of the
Institute of the human body measurement data released Treasury as the
basis, for each cylinder 2 airbags, body parts and for which the cylinder
is located at the bottom of the ball for half airbags, its radius of 90mm,
the other a group of air inside the Department of the cylindrical tube for
air bags, the size of the circle within to 560mm, thickness, 40mm, height
140mm, As air pressure is based on the Taiwan Society of vascular
surgery treatment of edema of the study, an inflatable pressure value set
50mm-Hg. Through the regulation of air pressure safety valve through
the sufficient to cope with the gait cycle were deflated. Inflatable used in
this study for the metal core component of industrial production by
micro-cylinder (model MCMB-11-20-80): Cylinder bore 32mm, stroke
- xi -
80mm). Gait cycle gas just sufficient enough for the structure including
the connecting tube and just enough space in the eight-shaped tube and
adequate justice. Hollow tube with a compression spring within the
other as a necessary and sufficient to promote the use of gas piston rod
of the function, just feet from the cable linked with the piston rod of the
swing period of the reversion of the position.
The second part of this study for the design and development,
"electrical stimulation-induced muscle compensation module" and "the
soles of the feet feeling the pressure sensing feedback compensation
module", the major projects including the development of electrical
stimulation-induced muscle pressure compensation modules and the
soles of the feet sensory feedback sensor signal compensation module
design, FES barbed electric actuator timing calibration of the
programming department patients after electrical stimulation threshold,
in accordance with the patients given gait cycle the hip extension and
flexion muscle stimulation, the current just enough after the thin-film
pressure group pressure sensing element, respectively, for receiving the
pressure of a sense of value, MSP430 single chip by the interpretation
will be given electrical stimulation of the output and to provide patients
with electrical stimulation; in time of electrical stimulation of the
pressure sensor under pressure time, with the patient's gait cycle. When
followed in the rear foot for stretching the hip muscle electrical
stimulation and follow the prompts patients to rear foot, if the heel with
a heel after landing at the same time, then give the hip extension and
flexion muscle electrical stimulation, and prompts after patients with a
heel to the heel at the same time, the last off the current when the heel to
give the hip flexion muscles electrical stimulation, and at the same time
to inform patients at this stage for the upcoming off before the heel, the
- xii -
bottom line in just before and after adequate Measurement of the
pressure group placed a thin-film pressure sensing element as the soles
of the feet during the gait cycle, the pressure feedback stimulation FES
hip extension and flexion muscles, controlling the core by the Texas
Instruments MSP430 single chip (model: MSP430xG4618IPZ), in detail
design based on IAR Embedded Workbench IDE for MSP430 single
chip programming tools, programming the pressure of the stampede into
25kg, 35kg and 45kg in three phases, respectively, to give control to
trigger electrical stimulation to stimulate the three-phase voltage output.
The third part of this study for the design of major items of work to
develop "bionic knee institutions" and "like a tube of gas-controlled
electrical stimulation for knee prostheses-style integration." Design of
bionic knee imitation of normal knee movement, the study formula
derived Dragon calculated instantaneous four-bar linkage of the
computing equation of the center, and then to VC + + to write a formula
to known 3 long for the fourth actuator stroke length formula computing
operation four-bar linkage, the angle of the instantaneous center
coordinates and the instantaneous center trajectory data export into txt
file format, through the MATLAB software package to txt file with the
instantaneous center trajectory data to map out the coordinates of
four-link instantaneous center of the mobile trajectory, seeking the best
literature of the instantaneous center of a long trajectory of the four-bar
linkage, Solid Works and then to interfere simulation, the design of the
knee, mainly under the first bionic Knee base to connect to the cylinder
at the top, as weight transfer and support patients with prosthetic knee
flexion during the period of flexion and extension of the fixed side, so
that the connecting tube for patients with weight transfer tube for the
base (the third poles) with the patient in flexion and extension when
- xiii -
moving, and finally integrated air tube for filling with the gait cycle
were deflated just enough structure and muscle induced by electrical
stimulation compensation module, the soles of the feet back feeling the
pressure sensing module and the compensation bionic knee institutions,
of "an angry imitation controlled for tube-type electrical stimulation of
knee prostheses."
Therefore, this study not only the completion of the development
of "an angry imitation controlled for tube-type electrical stimulation of
knee prostheses," to provide electrical stimulation knee amputee, foot
pressure sensor sensing feedback compensation, but also created a
design more in line with the normal human knee joint movement
trajectory of the instantaneous center institutions bionic knee.
Key words: prostheses for extinguishers, knee prostheses, electrical
stimulation, bionics, just enough
指導教授推薦書
口試委員會審定書
授權書…………………………………………………………………...iii
誌謝……………………………………………………………………...iv
中文摘要…………………………………………………………………v
英文摘要………………………………………………………...………ix
目錄………………………………………………………………xiv
圖目 錄……………………………………………………………...xviii
表目 錄……………………………………………………..……..…xxii
第一章研究背景、動機、目的…………………………………………1
1.1 研究背景…………………………………………………………1
1.2 研究動機…………………………………………………………1
1.2.1 截肢手術…………………………………………………..1
1.2.2 術後的後遺症………………………………………..……2
1.2.3 臨床膝上截肢手術後遺症解決方法………………..……3
1.2.4 膝上義肢部位分類………………………………………..5
1.3 研究目的…………………………………………………………6
1.3.1 系統開發…………………………………………………..6
xv
第二章文獻調查……………………………………………………..…8
2.1 膝上義肢膝關節結構設計之相關文獻…………………………8
2.1.1 單軸義肢…………………………………………………..9
2.1.2 多軸義肢…………………………………………………..9
2.1.3 混合式義肢………………………………………………11
2.1.4 電子義肢…………………………………………………11
2.2 文獻總結………………………………………………………..13
第三章氣囊承筒與步態週期充放氣義足結構設計
3.1 氣囊承筒概念設計及草圖……………………………..………14
3.1.1 氣囊承筒概念設計…………………………….…….…..14
3.1.2 氣囊步態週期充氣概念…………………………………16
3.1.3 氣囊步態週期充氣定義…………………………………17
3.1.4 氣試設計方案比較………………………………………19
3.1.5 氣囊內壓設計……………………………………………20
3.1.6 氣囊承筒設計規範………………………………………21
3.2 步態週期充放氣義足結構設計……………………………..…25
3.2.1 步態週期充放氣義足結構設計概念……………..……..25
3.2.2 步態週期充放氣義足結構設計…………………………26
3.2.3 步態週期充放氣義足動作分析…………...…………… 27
xvi
3.2.4 步態週期充放氣義足結構設計規範……………………27
3.2.5 步態週期充放氣義足結構原件製作……………………28
3.3 氣囊承筒與步態週期充放氣義足結構整合…………………..32
3.3.1 氣囊承筒與步態週期充放氣義足結構整合測試………32
第四章肌電刺激肌力誘發補償模組與腳底壓力桿測回饋感覺補償模
組設計…………………………………………………………34
4.1 肌電刺激肌力誘發補償模組設計…………………………….34
4.1.1 肌電刺激肌力誘發補償模組設計………………………34
4.1.2 肌電刺激肌力誘發補償系統設計………………………35
4.2 腳底壓力桿測回饋感覺補償模組設計………………………..37
4.2.1 腳底壓力桿測回饋感覺補償模組概念設計……………37
4.2.2 腳底壓力桿測回饋感覺補償模組概念設計……………37
4.3 電刺激模組整合開發…………………………………………..38
4.3.1 電刺激模組整合開發……………………………………38
4.3.1 肌電刺激肌力誘發補償模組與腳底壓力桿測回饋感覺補
償模組設計………………………………………………38
4.3.2 電刺激模組開發驗證…………………………..………..41
第五章仿生膝關節機構設計與具仿生氣控承筒之肌電刺激式肌
上義肢整合……………………………………………………...43
xvii
5.1 仿生膝關節機構設計…………………………………………..43
5.1.1 仿生膝關節機構概念設計………………………………43
5.1.2 仿生膝關節機構分析……………………………………44
5.1.3 仿生膝關節機構規範……………………………………48
5.2 具仿生氣控承筒之肌電刺激式肌上義肢整合………………..49
5.2.1 仿生膝上義肢各零件整合………………………………49
第六章結果討論與未來發展……………………………………...….52
參考文獻…………………………………………………………..……54
附錄一投稿文章………………………………………………………..56
xviii
圖目錄
圖 1.1 截肢患者………………………………………………………….1
圖1.2 糖尿病患…………………………………………………….……1
圖1.3 下肢截肢部位…………………………………………….….……2
圖1.4 前、後側主肌肉群…………………………………….……….…3
圖1.5 骨骼肌收縮產生”擠乳作用” …………………….………………3
圖1.6 循環器治療淋巴水腫…………………………………………..…4
圖1.7 肌力與步態訓練…………………………………………….…….4
圖1.8 電子義肢………………………………………………….……….5
圖1.9 膝上義肢部位分類…………………………………………..……6
圖1.10 具仿生氣控承筒之肌電刺激是膝上義肢雛型開發……………7
圖2.1 膝上義肢結構 ……………………………………………………8
圖2.2 單軸義膝…………………………………………………………. 9
圖2.3 四連桿機構………………………………………………………10
圖2.4 五連桿機構………………………………………………………10
圖2.5 四連桿機構之瞬心………………………………………………10
圖2.6 混合式義肢………………………………………………………11
圖2.7 德林義肢四連桿義肢(左)與五連桿義肢(中、右)……………..12
圖2.8 C-Leg 膝上電子義肢…………………………………………….13
xix
圖3.1 氣囊充氣氣壓時序圖…………………………….……………..17
圖3.2 步態週期圖……………………………………………….……..18
圖3.3 Mckibben 人工肌肉…………………………………….……….18
圖3.4 直列交替式氣囊上視圖………………………………….……..19
圖3.5 螺旋交替式氣囊側試圖…………………………………………19
圖3.6 直列交替式氣囊與連通管充放氣義肢結構示意圖……………19
圖3.7 螺旋交替式氣囊與連通管充放氣義肢結構示意圖……………20
圖3.8 淋巴水腫循環機…………………………………………………20
圖3.9 淋巴水腫循環機作動示意圖……………………………………21
圖3.10 半球型氣囊……………………………………………………..24
圖3.11 圓筒型氣囊……………………………………………………..24
圖3.12 步態週期充放氣義足結構示意圖……………………………..26
圖3.13 步態週期充放氣義足動作分析………………………………..27
圖3.14 步態週期充放氣義足結構圖…………………………………..29
圖3.15 氣囊均壓測試………………………………………….….……33
圖3.16 步態週期充放氣義足結構測試………………………….…….33
圖4.1 薄膜壓組式壓力感測原件主要設置……………………………35
圖4.2 肌電刺激肌力誘發補償模組設計………………………………36
圖4.3 肌電刺激肌力誘發補償作動時序………………………………36
xx
圖4.4 腳底壓力感測回饋感覺補償作動時序…………………………38
圖4.5 薄膜壓組式壓力感測元件………………………………………39
圖4.6 吉懋動力式電刺激………………………………………………39
圖4.7 MSP430 單晶片…………………………………………………40
圖4.8 電刺激輸出控制單元……………………………………………40
圖4.9 肌電刺激誘發補償與腳底壓力感測回饋感覺補償模組………41
圖4.10 以均壓方式壓於薄膜壓組式壓力感測元件…………………..41
圖4.11 砝碼代替人體步態中量測試…………………………………..42
圖4.12 以示波器模擬測試……………………………………………..42
圖4.13 25KG 測試結果………………………………………………...42
圖5.1 人體膝關節移動瞬時中心軌跡…………………………………43
圖5.2 四連桿機構瞬時中心位置之運算方承關膝結構………………44
圖5.3 以VC++撰寫出各角度移動時瞬時中心位置之程式………….45
圖5.4 已知三桿長求第四桿長度………………………………………45
圖5.5 各角度運算四連桿機構運轉……………………………………46
圖5.6 將瞬心軌跡座標資料匯出成txt 檔格式………………………..46
圖5.7 將txt 檔內座標資料繪入MATLAB 套裝軟體…………………46
圖5.8 將txt 檔內座標資料繪入MATLAB 套裝軟體………………….47
圖5.9 最符合文獻中的瞬心軌跡之四連桿長…………………………47
xxi
圖5.10 仿生膝關節機構模型…………………………………………..49
圖5.11 仿生膝關節……………………………………………..………49
圖5.12 氣囊承筒……………………………………………….……….50
圖5.13 步態週期充放氣義足…………………………………..………50
圖5.14 肌電刺激肌力誘發補償模組與腳底壓力感測回饋感覺補償模
組………………………………………………………………………..50
圖5.15 仿生膝關節……………………………………………………..51
圖5.16 具仿生氣控承筒之肌電刺激式膝上義肢……………………..51
xxii
表目錄
表 3.1 氣囊承筒面積與型狀衝突矩陣表………………………………15
表3.2 氣囊承筒面積與壓力衝突矩陣表………………………………15
表3.3 萃思創意問題創新原則…………………………………………16
表3.4 左股骨外踝至左大轉子長度……………………………………22
表3.5 大腿上圍(立姿)………………………………………………….22
表3.6 大腿中圍…………………………………………………………23
表3.7 氣囊承筒元件及功能需求表……………………………………25
表3.8 氣囊承筒元件材質及規格表……………………………………25
表3.9 髕骨下點至地面…………………………………………………28
表3.10 左脛骨外踝至左腓骨頭………………………………………..28
表3.11 踝骨至地面……………………………………………………..28
表3.12 步態週期充放氣義足元件材質及功能需求…………………..30
表3.13 步態週期充放氣義足元件材質及規格表…………….………31
表5.1 髕骨上點至地面………………………………………………...48
表5.2 髕骨下點至地面…………………………………………………48
參考 文 獻
【1】 G.S. Donald, Prosthetics and Orthotics, 1990; 1-5.
【2】 Ron Seymour, Prosthetics and Orthotics: Lower Limb and
Spinal. 2002;4-14.
【3】 S.Y. Chen, “Rates and characteristics of lower limb amputations
in Taiwan,” 1997. Prosthetics and Orthotics International, 2002;
26: 7-17.
【4】 楊淑玲、凌美貝(2002).一位手部截肢患者之創傷後反應和
調適過程之探討.長庚護理,14(2),166-173。
【5】 Donald G. Shurr, John W. Michael, Prosthetics and Orthotics,
2nd ed. Prentice Hall, 2007.
【6】 Winter DA, “Human balance and posture control during
standing and walking”, Gait and Posture, 3, 124-193, 1995.
【7】 Kaya BK, Krebs DE, Riley PO, “Dynamic stability in elders:
momentum control in locomotor ADL”, Journals of
Gerontology, 53A, M126–M134, 1998.
【8】 Krebs DE, Jette AM, Assmann SF, “Moderate exercise
improves gait stability in disabled elders”, Arch Phys Med
Rehab, 79, 1489–1495, 1998.
【9】 Polcyn AF, Lipsitz LA, Kerrigan DC, Collins JJ, “Age-related
changes in the initiation of gait: degeneration of central
mechanism for momentum generation”, Arch Phys Med Rehab,
79, 1582–1589, 1998.
【10】 Tucker CA, Ramirez J, Krebs DE, Riley PO, “Center of gravity
dynamic stability in normal and vestibulopathic gait”, Gait and
Posture, 8, 117–123, 1998.
- 55 -
【11】 Chou LS, Kaufman KR, Robert HB, Draganich LF, “Motion of
the whole body’s center of mass when stepping over obstacles
of different heights”, Gait and Posture, 13, 17–26, 2001.
【12】 Saini M, Kerrigan DC, Thirunarayan MA, Duff-Raffaele M.,
“The vertical displacement of the center of mass during walking:
a comparison of four measurement methods”, Journal of
Biomechanical Engineering, 120, 133–139, 1998.
【13】 Orendurff MS, Segal AD, Klute GK, Berge JS, Rohr ES, Kadel
NJ, “The effect of walking speed on center of mass
displacement”, J Rehabil Res Dev, 41(6A):829-34, 2004.
【14】 Pai YC, “Movement termination and stability in standing”,
Exerc Sport Sci Rev, 31(1):19-25, 2003.
【15】 Winter DA, Patla AE, Frank JS, “Assessment of balance control
in humans”, Med Prog Technol, 16:31–51, 1990.
【16】 Jeka J, Kiemel T, Creath R, Horak F, Peterka R, “Controlling
human upright posture: velocity information is more accurate
than position or acceleration”, J Neurophysiol, 92, 2368-2379,
2004.
【17】 Gill J, Allum JHJ, Carpenter MG, Held-Ziolkowska M, Adkin
AL, Honegger F and Pierchala K, “Trunk sway measures of
postural stability during clinical balance tests: effects of age”, J
Gerontoly, 56A:M438–M447, 2001.
【18】 Allum JHJ, Mark G. Carpenter MG, “A speedy solution for
balance and gait analysis: angular velocity”, Current Opinion in
Neurology, 18:15–21, 2005.
【19】 Adkin AL, Allum JHJ, Bloem BR, “Stance and gait trunk sway
test measurements to assess balance control in patients with
Parkinson disease”, Gait & Posture, 22 , 240-249, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔