跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王福傳
研究生(外文):Fu-Chuan, Wang
論文名稱:水熱法製造氧化鋁粉末之研究
論文名稱(外文):Hydrothermal synthesis of α- Al2O3 powder
指導教授:黃聖芳黃聖芳引用關係
學位類別:碩士
校院名稱:中華技術學院
系所名稱:機電光工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:110
中文關鍵詞:水熱法氧化鋁氫氧化鋁壓力釜
外文關鍵詞:Hydrothermal methodα-Alumina oxide powderautoclave
相關次數:
  • 被引用被引用:5
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:122
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討利用水熱法製造α相氧化鋁(α-Al2O3)粉末之製程參數。將氫氧化鋁(Al(OH)3)粉末原料置於密閉的壓力釜內,在高溫高壓的環境下,於碳酸氫銨(NH4HCO3)水溶液中生成α相氧化鋁粉末。所得粉末利用X光繞射儀分析其成分、純度以及組成相,使用掃描式電子顯微鏡觀察粉末之外形、表面狀況、大小以及結晶形態,並以雷射粒徑分析儀測量粉末之粒徑分佈。
實驗結果顯示當製程溫度低於400℃時,所得粉末多為過渡相氧化氫氧化鋁(AlO(OH))之結晶相。當製程溫度增高至450℃,並持溫5小時以上,即可成功得到粉末。所得粉末中含有之氫氧化鋁殘留量隨持溫時間增加而下降。顯微結構顯示粉末之外觀多呈六方晶形狀,平均尺寸為20-30μm。本研究之α相氧化鋁合成機制主要為氫氧化鋁經脫水反應而成,以及少部份經溶解再析出而生成α相氧化鋁粉末。本研究獲得之最佳製程參數為溫度450℃,碳酸氫氨水溶液濃度10%,以及持溫10小時以上。
This study mainly develops the synthesizing process of α-alumina oxide (α-Al2O3) powder by hydrothermal method. The aluminum hydrate (Al(OH)3)) powders and ammonium hydrogen-carbonate (NH4HCO3) solution were charged into the vessel simultaneously. Then, the aluminum hydrate was transformed into α-alumina oxide in high-pressure as well as high-temperature state. X-ray diffraction was employed to analyze the constituting phases of the finished α-alumina oxide powders. The profile, surface, size, and lattice morphology of the powders were observed by scanning electron microscope. The particle size of powders was examined by laser scanning diameter analyzer.
The results revealed that AlO(OH) powders was obtained as a transitional product when the heat-treated temperature was below 400℃. The α-alumina oxide was obtained successfully when the heat-treated temperature increased above 450℃, and held over 5 hours. The amount of residual aluminum hydrate was decreased as heat-treated temperature increased. The average size of α-alumina oxide powders is 20~30μm, and the profile is hexagonal. The synthesis mechanism of α-alumina oxide was primarily aluminum hydrate dehydrated and transformed into α-alumina oxide, as well as a little aluminum hydrate was dissolved and precipitated to become α-alumina oxide. The optimum process parameter to produce α-alumina oxide was heat-treated temperature above 450℃, concentration of ammonium hydrogen-carbonate 10%, and held for more than 10 hours.
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
表目錄 vii
圖目錄 viii

第一章 緒論 1
1-1 前言 1
1-2 研究背景與動機 2
1-3 研究方法 2

第二章 文獻回顧 4
2-1 氧化鋁介紹 4
2-1-1 熱性質 5
2-1-2 物理與機械性質 5
2-1-3 硬度 5
2-1-4 化學反應性 6
2-1-5 電性 6
2-2 氧化鋁同質多晶形態 6
2-3 粉末之備製方法 8
2-4 水熱法 9
2-4-1 水熱法發展過程 9
2-4-2 水熱法生長單晶之方式與特性 9
2-4-3 水熱法之應用 10
2-4-4 水熱法製造粉體之優點 11
2-5 α相氧化鋁粉末之製造方法 12
2-5-1 機械球磨法 12
2-5-2 氣相反應法 13
2-5-3 沉澱法 13
2-5-4 溶膠凝膠法 14
2-5-5 燃燒法 15
2-5-6 水熱法 16

第三章 材料與實驗方法 37
3-1 實驗目的 37
3-2 實驗材料 37
3-3 實驗設備與分析儀器 37
3-3-1 加熱爐 37
3-3-2 壓力釜 38
3-3-3 原料罐 38
3-4 實驗設定 38
3-4-1 製程溫度 39
3-4-2 礦化劑水溶液之濃度比例 39
3-4-3 持溫時間 39
3-5 實驗程序 39
3-5-1 前置作業 39
3-5-2 生產作業 40
3-6 分析 42
3-6-1 X光繞射分析 42
3-6-2 顯微結構分析 42
3-6-3 雷射粒徑分析 42

第四章 結果與討論 55
4-1 XRD繞射分析 55
4-1-1 氫氧化鋁殘留量定性分析 58
4-2 氧化鋁粉微結構分析 59
4-3 氧化鋁粉粒徑分析 61

第五章 結論 91

第六章 參考文獻 92

作者簡介 97

附錄 98
[1]羅煥耿 主編,化學元素導覽,世潮出版有限公司 (2004)。
[2]汪建民主編,陶瓷技術手冊(下冊),中華民國粉末冶金協會出版 (1994)。
[3]Levin, D. Brandon “Metastable Alumina Polymorphs: Crystal Structures and Transition Seqences,” Journal of American Ceramic Society 81 (8) (1998) 1995-2012.
[4]李宏凱,利用Kyropoulos方法生長藍寶石單晶之研究,中華技術學院機電光工程研究所碩士論文 (2006)。
[5]C. Misra, J. I. Kruschwitz, “kirk-Othmer Encyclopedia of Chemical Technology,” fourth ed, Vol.2, John Wiley&Sons, New York, (1978) 302.
[6]C. N. Satterfield, “Heterogeneous Catalysis in Practice: hydrogen,” McGraw-Hill, New York, (1980) 87-91.
[7]R. Prasad, L. A. Kenney and E. Ruckenstein, “Kenetics Combustion,’’ Catalytic Reverse Science Engineering, Vol.26, No.1 (1984) 1-58.
[8]R.Venkatesh, S. R. Ramanan, “Influence of processing variables on the microstructure of sol–gel spun alumina fibresMater,’’ Materials Letters 55 (2002) 189–195.
[9]Y. Sakuma, K. Iwanaga, T. T. Moto, H. Iwanaga, “Neutron-irradiation effect on the mechanical properties of alumina fiber,’’ Journal of Nuclear Materials 254 (1998) 243–248.
[10]E. S. Lukin, N. A. Makarov, I. V. Dodonova, S. V. Tarasova, E. A. Badina, N. A, Popova, “New ceramic materials based on aluminum oxide,’’ Refractories and Industrial Ceramics, Vol.42, Nos7-8 (2001) 2-10.
[11]M. Schehl, L. A. Diaz, R. Torrecillas, “Alumina nanocomposites from powder –alkoxide mixtures,’’Acta Materialia 50 (2002) 1125-1139.
[12]Y. K. Park, E. H. Tadd, M. Zubris, R. Tannenbaum, “Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides,’’ Materials Research Bulletin 40 (2005) 1506-1512.
[13]楊宸宇,奈米級α相氧化鋁粉末燒結之研究,國立成功大學資源工程學系碩士論文 (2007)。
[14]廖原章,次微米級氫氧化鋁粉末之備製及其熱性質分析之研究,中原大學化學系碩士論文 (2005)。
[15]O. V. Al’myasheva, E. N. Korytkova, A. V. Maslov, and V. V. Gusarov, “Preparation of Nanocrystalline Alumina under Hydrothermal Conditions,” Inorganic Materials, Vol.41, No.5 (2005) 460–467.
[16]S. J. Wilson and J. D. C. Mc Connell, “A kinetic study of the system γ-AlOOH,” Journal of Solid State Chemistry, Vol.34, Issue 3 (1989) 315-322.
[17]D. L. Hart, “Alumina chemical: Science and Technology Handbook,” Journal of American Ceramic Society (1990).
[18]謝沐辰,以油酸分散氫氧化鋁膠製造α相氧化鋁粉末程序之研究,國立成功大學資源工程學系碩士論文 (2004)。
[19]汪建民主編,精密陶瓷科技,工業技術研究院 (1987)。
[20]Yet-Ming Chiang, Dunbar P. Birnie, W. David Kingery “Physical Ceramics : Principles for Ceramic Science and Engineering ,” John Wiley & Sons. New York.(1996).
[21]蔡信行 孫光中編著,奈米科技導論,新文京開發出版股份有限公司 (2004)。
[22]張安華 主編,實用奈米技術,新文京開發出版股份有限公司 (2005)。
[23]K. Byrappa, M. Yoshimuram, “Handbook of Hydrothermal Technology,” Noyes Publications, New Jersey, USA. (2001).
[24]F. Iwasaki, H. Iwasaki, “Historical review of quartz crystal growth,” Journal of crystal growth 237-239 (2002) 820-827.
[25]王旭昇,水熱法單晶石英生長研究及其數值分析,中華技術學院機電光研究所碩士論文 (2007)。
[26]張玉龍 唐磊 主編,人工晶體生長技術、性能與應用,化學工業出版社(2005)。
[27]K. Byrappa, T. Adschiri “Hydrothermal technology for nanotechnology,” Progress in Crystal Growth and Characterization of Materials 53 (2007) 117-166.
[28]M. L/Panchula, J. Y. Ying, “Mechanical synthesis of nanocrystalline α-Al2O3 seeds for enhanced transformation kinetics,” Nanostructured Materials, Vol.9 (1997) 161-164.
[29]T. C. Chou, T. G. Nieh, “Nucleation concurrent anomalous grain growth of α-Al2O3 during γ- Al2O3 phase transformation,” Journal of American Ceramic Society, Vol.74 (1991) 2270-2279.
[30]J. G. Li, X. D. Sun, “synthesis and sintering behavior of nanocrystalline α-Alumina powder,"Acta Materialia 48 (2000) 3103-3112.
[31]W. M. Zeng, L. Gao, “A new sol-gel route using inorganic salt for synthesizing Al2O3 nanopowders,"NanoStructured Materials, Vol.10, No.4 (1998) 543-550.
[32]S. Bhaduri, E. Zhou, S. B. Bhaduri, “ Auto ignition processing of nanocrystalline α - Al2O3,"NanoStructured Materials, Vol.7, No.5 (1996) 487-496.
[33]Takio Noguchi, Keitaro Matsui, Nazrul M. Islam, Yukiya Hakuta, Hiromichi Hayashi, “Rapid synthesis of γ-Al2O3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system,"Journal of Supercritical Fluids 46 (2008) 129–136.
[34]Jun D, T. Tsuzuki, P. G. Cormick, “Ultra fine Alumina particles Prepared by Mechanochemical/Thermal Processing ,” Journal of American Ceramic Society 79 (11) (1996) 2956-2958.
[35]P. Billik, T. Turanyi, G. Plesch and B. Horvath “Mechanically activated basic polyaluminium chloride as precursor for low-temperature α-Al2O3 formation,” Scripta Materialia 571 (2007) 619-62.
[36]B. R. Huang, “The Synthesis of Large Area Polycrystalline Diamond Film Using Microwave Plasma Chemical Vapor Deposition System,” Proceedings of the APSPT (1997) 201-205.
[37]C. Y. To, L. Y. Cheung, Y. F. Li, K. C. Chung, Daniel H. C. Ong, Dickon H. L. Ng, “Synthesis of ultra thin α-alumina nanobelts from aluminum powder by chemical vapor deposition,” Journal of the European Ceramic Society 27 (2007) 2629-2634.
[38]S. Rajendran, “Production of ultrafine alpha alumina powder and fabrication of fine grained strong ceramics,” Journal of Materials Science 29 (1994) 5564-5672.
[39]Sharma, P. K, M. H. Jilavi, D. Burgard, R. Nass, H. Schmidt, “Hydrothermal synthesis of nanosize α-Al2O3 from seeded Aluminum hydroxide,” Journal of American Ceramic Society 81 (10) (1998) 2732-2734.
[40]H. Gocmez, O. Ozcan, “Low temperature synthesis of nanocrystalline α-Al2O3 by a tartaric acid gel method,” Materials Science and Engineering A 475 (2008) 20-22.
[41]Jiang Li, Yubai Pan, Changshu Xiang, Qiming Ge, Jingkun Guo,“Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process,” Ceramics International 32 (2006) 587-591.
[42]A. I. Y. Tok, F. Y. C. Boey, X. L Zhao, “Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis,” Journal of Materials Processing Technology 178 (2006) 270-273.
[43]G. Yamaguchi, H. Yanagida, “Corundum α-Al2O3 formation from the dehydration of Boehmite γ-AlOOH under Hydrothermal conditions,” Factors determining the grain size of Corundum (1963) 1155.
[44]A. Kaiser, D. Sporn, H. Bertagnolli, “Phase transformation and control of habit in lyothermal sythesis of α-Al2O3,” Journal of the European Ceramic Spciety, Vol.14, Issue 1 (1994) 77-83.
[45]T. S. Kannan, P. K. Panda, V. A. Jaleel, “Preparation of pure boehmite, α-Al2O3 and their mixtures by hydrothermal oxidation of aluminum metal,” Journal of materials science letters 16 (1997) 830-834.
[46]T. R. N. Kutty, V. Jayaraman, G. Periawami, “Preparation of proton–β/β”-aluminum by the ion-exchange under hydrothermal conditions and their characterisation,” Solid State Ionics 128 (2000) 161-175.
[47]尚學軍,水熱法合成α-Al2O3 粉體的工藝因素研究,核心期刊,耐火材料第42卷 第六期 (2008)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊