跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張民宗
研究生(外文):Chang ming tseng
論文名稱:一種用於量測奈米導線場效電晶體訊號之線性陣列讀出電路
論文名稱(外文):A LINEAR ARRAY READOUT CIRCUIT FOR SIGNAL MEASURMENT OF SILICON NANO-WIRE FIELD-EFFECT TRANSISTORS
指導教授:高川原
指導教授(外文):Chuan-Yuan Kao
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
中文關鍵詞:場效電晶體讀出電路
外文關鍵詞:FIELD-EFFECT TRANSISTORSEADOUT CIRCUIT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出並分析新型互補式金氧半(CMOS)電流讀出電路設計技巧製
作運用在奈米陣列導線電訊號讀出之積體電路晶片,並搭配由奈米科技研究
所所製作出的矽奈米導線陣列,以完成整個奈米量測系統的設計。由於矽奈
米導線上電訊號的變化極微小,因此選擇適當的讀出電路,將矽奈米導線上
的輸出電訊號傳輸至後級做訊號的處理是非常重要一部份。為因應矽奈米導
線的需求,本論文提出了新型電流之讀出電路架構,並以互補式金氧半製程
技術完成電路的設計與模擬。
為避免影響矽奈米導線上的電訊號,因此利用『緩衝式直接輸入(Buffered
Direct Injection)』作為讀出架構,此架構可以改進傳統『直接輸入』(Direct
Injection)的問題與缺點。此外,此前級訊號處理功能(on-FPA signal processing)
可以提高讀出電路的效能並降低後級電路雜訊之影響。四種可選擇的積分電
容和可獨立控制積分時間的功能更可增加檢測電流範圍。
改良後的雙重三角取樣(Double Delta Sampling)電路除了可以減少固定
樣式雜訊(fixed pattern noise)、時脈回饋雜訊、通道電荷注入和共模雜訊,還
可以改善線性度和增加輸出電壓的擺幅。
1×32 讀出晶片使用 0.35μm 2P4M N-well 互補式金氧半技術設計並完成
晶片模擬,在驗證晶片的量測上,於 298K 溫度下及 3.3 V 工作電壓下使用目
前本實驗室現有的 IR晶片搭配電阻進行,其量測結果成功驗證了類似的讀出
晶片的效能。
模擬中的晶片、輸出線性度為 99.73%、最大輸出擺幅為1.6V、最大讀出
速度為 10MHz、最大畫面速率為 30kframes/sec(4MHz 讀出速率)、可調積分
37.42us 到 0.935us (畫面速率為26k frames/sec)、功率消耗為14.5 mW。此高效
能讀出電路具有高注入效率(injection efficiency)、高電荷容量(storage
capacity)、高可調積分範圍、低雜訊等優點,可適用於大範圍電流讀出的運用。
我們深信,吾人所提出之互補式金氧半讀出電路架構以及其設計技術已
為系統之讀出處理電路設計提供一個新方向。爾後,將奈米矽導線用於量測
生物電訊號的相關研究發展與實際應用將持續進行。
In this thesis, new CMOS current readout design techniques are proposed,
developed, and applied to the implementation of readout integrated circuit chip for
the signal of array nano-wire. The readout circuit will be combined with the array
nano-wire detector chip developed by the Institute of Nanotechnology (INT) at
National Chiao Tung University to complete the entire detectable system of the
nano-wire. Since the changes of silicon nano-wire signals are hardly detected, it is
important to choose an appropriate readout circuit for the purpose of transmitting
signals from silicon nano-wire to back stage. This thesis proposed a new readout
circuit structure of electric current and achieved the circuit design and simulation
by CMOS technique.
By using the buffered direct injection (BDI) circuit, the deficiencies of
conventional Direct Injection (DI) can be reduced. The on-FPA signal processing
capability of BDI circuit at front stage can reduce the noise effect of downstream
circuit and improve the readout performance. The selectable integration capacitors
and independent integration time control can enhance the optical current range.
Moreover, the improved double delta sampling (DDS) circuit is used to not
only suppress fixed pattern noise, clock feedthrough noise, channel charge
injection but also common mode noise.
An experimental 1×32 readout chip has been designed and fabricated by using
0.35 μm 2P4M N-well CMOS technology. The measurement results of the
fabricated readout chip under 298K and 3.3 V supply voltage have successfully
verified both readout function and performance.
The size of the chip is 7.4mm×1.6mm. The linearity performance of the
readout chip is better than 99.73% and the maximum output swing is 1.6V. The
maximum readout speed is 10 MHz. The maximum frame rate at 4 MHz readout
speed is 30k frames/sec. The integration time tunable range at 26k/s frame rate is
from 37.42us to 0.935us. The total active chip power is below 14.5 mW at 298K. It
is shown that a high-performance readout interface circuit for linear FPA with high
injection efficiency, high charge sensitivity, large storage capacity, wide
integration time tunable range and low noise is realized. These advantageous traits
make the readout circuit suitable for the various applications.
It is believed that the proposed CMOS readout circuit and the associated
design methodology offer new design scope and future feasibility for
new-generation readout ICs. Further improvement on the nano-wire detectable
bio-signal technology will be explored and developed in the future.
摘 要..........................................................................................i
ABSTRACT....................................................................................iii
目錄..................................................................................................v
圖目錄............................................................................................vii
第一章 簡介....................................................................................1
1.1 研究背景.............................................................................................1
1.2 研究動機.............................................................................................4
1.3 論文架構.............................................................................................9
第二章 矽奈米導現場效電晶體...................................................10
2.1 Silicon Nano-Wire FET元件的量測與製程...................................10
2.2 Silicon Nano-Wire FET元件I-V 特性...........................................13
第三章 讀出電路架構與電路設計...............................................17
3.1 晶片架構...........................................................................................17
3.2 晶片運作原理...................................................................................20
3.3 晶片設計...........................................................................................21
3.3.1 類比電路................................................................................21
3.3.1.1 Buffered Direct Injection (BDI) Input Stage...............22
3.3.1.2 Improved Double Delta Sampling (DDS) Circuit.......24
vi

3.4 晶片模擬結果.................................................................................27
第四章 實驗測試與成果分析.......................................................30
4.1 量測平台架構.....................................................................................30
4.2 實驗結果...........................................................................................32
第五章 論與未來工作...................................................................33
5.1 總結...................................................................................................33
5.2 未來工作...........................................................................................33
參考文獻........................................................................................34
C. M. Niemeyer, 2001. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology
Meets Material Science, Angew. Chem. Int. Ed, vol. 40, pp. 4128-4158.
Meinrad Schienle, Christian Paulus, Alexander Frey, Franz Hofmann, Birgit
Holzapfl, Petra Schindler-Bauer and Roland Thewes, 2004. A Fully Electronic
DNA Sensor With 128 Positions and In-Pixel A/D Conversion, IEEE Journal of
Solid-State Circuits, Vol. 39, N. 12, pp. 2438-2445.
N. Bluzer and R. Stehlik, 1978. Buffered direct injection of photocurrents into
charge coupled devices, IEEE Trans. Electron Devices, vol. 25, no. 2, pp. 160-166.
R. J. Dempsey, D. G. Davis, R. G. Jr. Buice and R. A. Lodder, 1996. Biological
and medical applications of near infrared spectrometry, in Applied Spectroscopy,
vol. 50, no. 2, pp. 18A-34A.
Y.-S. Yang, U. Lu and B. C. P Hu, 2002. Prescription chips: toward the
development of enzyme and biochemical Cmos chips, IEEE Circuits Devices Mag.,
vol. 18, pp. 8-16.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top