(3.236.222.124) 您好!臺灣時間:2021/05/13 20:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉玫君
研究生(外文):Mei-Jiun Liu
論文名稱:以唾液樣本進行強化玻璃製造廠作業勞工甲醇短時暴露測定
論文名稱(外文):Short-term Exposure Measurements of Methanol by Using Salivary Samples for Workers in a Tempered Glass Manufacturing Factory
指導教授:許憲呈
學位類別:碩士
校院名稱:長榮大學
系所名稱:職業安全與衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:甲醇空氣暴露測定唾液樣本尿液樣本
外文關鍵詞:methanolair exposure measurementsalivary samplesurinary samples
相關次數:
  • 被引用被引用:1
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對強化玻璃製造廠膠合作業勞工進行甲醇空氣暴露連續偵測及多次唾液樣本甲醇含量測定,主要研究目的為:(1)分析唾液中甲醇暴露值與空氣即時監測測定值相關程度;(2)比較唾液與尿液甲醇暴露測定值的平均濃度和變異情形差異;(3)評估唾液與尿液甲醇暴露測定值相關程度。本研究針對強化玻璃製造廠膠合作業勞工4名,隨機選取10個工作天,進行空氣暴露及生物檢體樣本(包括:唾液和尿液)的收集。另外,選取工廠未暴露任何有機溶劑的勞工25人收集其唾液樣本,作為甲醇唾液背景值。合計對此甲醇暴露勞工獲得38人天的測定,完整的測定資料包括:(1)以矽膠管採集8小時時量加權平均空氣暴露濃度;(2)工作前後尿液樣本和工作期間唾液樣本暴露測定濃度;(3)直讀式儀器即時測定個人及空氣暴露濃度。所收集空氣、唾液及尿液樣本以氣相層析質譜儀(CG/MS)頂空氣體進樣(headspace)分析,個人及空氣即時暴露以直讀式儀器HOBO Figaro TGS-822 Sensor量測。暴露測定資料分析結果發現:在暴露組與非暴露組的唾液及尿液樣本甲醇濃度均存在顯著差異(p=0.0002)。在暴露組勞工,唾液與空氣每小時樣本甲醇平均濃度變化趨勢相關性佳(R2=0.98),因此唾液樣本甲醇暴露濃度可以反映空氣短時暴露濃度,且每小時唾液甲醇暴露測定值顯示,在一天8小時中確實存在相當變異。以唾液與尿液樣本測定分別估計甲醇8小時時量加權平均濃度,並執行線性迴歸分析,結果顯示二者間亦存在顯著相關(R2=0.58)。發現下班前尿樣樣本暴露濃度值與下班前一小時之空氣樣本暴露濃度值相關性R2值達0.65,考量甲醇在尿液的半衰期短,所以下班前的尿液樣本暴露濃度,受當天下班前1~2個小時內高濃度所影響,因此可利用唾液樣本來取代尿液樣本測定短時暴露濃度,並且用以推估空氣暴露濃度值。本研究發現唾液樣本在冰存後確實降低唾液樣本中的甲醇濃度(p<0.0001),為了探討唾液樣本甲醇暴露濃度,建議樣本於採樣當天分析完畢,以確保樣本的穩定性。
This study conducted continuous air monitoring of methanol exposure and measured the amount of methanol in multiple salivary samples for the workers of gluing process in a tempered glass manufacturing factory. The objectives of this study are: (1) to analyze the association of methanol exposure measurements between salivary samples and real-time air samples; (2) to compare the difference of mean and variability estimated based on salivary and urine samples; and (3) to evaluate the association of methanol exposure measurements between salivary and urine samples. This study recruited 4 workers of the gluing process in the tempered glass manufacturing factory, and randomly selected 10 workdays to conduct the sample collection of airborne exposure and biological specimens including saliva and urine. In addition, the salivary samples of 25 workers without any organic solvent exposure in the factory were collected for the measurement of salivary methanol background level. A total of 38 person-day exposure measurements were collected for the 4 methanol exposed workers. The complete methanol exposure data included: (1) the 8-hour time-weighted average (TWA) exposure concentrations measured by silica gel tubes; (2) the exposure measurements from the pre- and post-shift urine samples and the work-shift salivary samples; (3) the personal real-time airborne concentrations measured by a direct-reading instrument. The air, salivary and urinary samples were analyzed by using gas chromatograhy/mass spectrometry (GC/MS) with a headspace system; the personal real-time airborne concentrations were measured by using a Figaro TGS-822 sensor with a HOBO data logger. The results of exposure data analysis showed significant differences of the methanol concentrations of the salivary (p=0.0002) and urinary (p=0.0022) samples between exposure and non-exposure workers. For the methanol exposure workers, a highly significant association (R2=0.98) existed between hourly salivary and air methanol exposure measurements. This indicated that the hourly measured methanol concentrations of the salivary samples could represent the short-term air methanol exposure and illustrate significant variability in the daily 8-hour methanol exposure for the workers. The linear regression analysis of the 8-hour TWA exposure concentrations estimated from the salivary and urinary samples showed a high significant association between the estimated values (R2=0.58). A high association (R2=0.65) was also found between the methanol exposure concentrations measured by the urinary samples and the air methanol concentrations just one hour before the end of work shifts. Under the consideration of the short half-life of methanol in urine, the exposure concentrations estimated by the urinary samples collected before the end of work shifts possibly influenced by the high concentration exposure occurring in 1~2 hours before the end of the work shifts. Therefore, it is possible that the salivary sample could be used to replace the collection of urinary sample for the estimation of air methanol exposure concentration. This study also found a significant reduction (p<0.0001) of the measured methanol concentrations between the non-frozen and frozen salivary samples. For the best result to measure the methanol concentration in salivary samples, it is better to analyze the samples at the same day as the sample collection.
誌謝 I
中文摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 研究架構 4
第二章 文獻回顧 5
2.1 甲醇的物化特性 5
2.2 甲醇的代謝和其健康效應 5
2.2.1 甲醇的代謝 5
2.2.2 甲醇的健康效應 6
2.3 甲醇的生物偵測 7
2.4 以唾液樣本作為暴露偵測方法回顧 7
2.5 唾液樣本的分析偵測的問題 9
第三章 材料與方法 11
3.1 採樣策略 11
3.1.1 空氣暴露採樣測定 11
3.1.2 唾液樣本採樣 12
3.1.3 尿液樣本採樣 12
3.1.4現場工作狀況紀錄 12
3.2 分析儀器 13
3.2.1 空氣樣本分析方法 13
3.2.2 唾液樣本分析方法 14
3.2.3 尿液樣本分析方法 14
3.3 空氣、尿液及唾液樣本分析的品保保管規範 15
3.3.1 檢量線建立 15
3.3.2 回收率測試 15
3.3.3 精確度測試 16
3.3.4 分析品保確定 16
3.3.5 方法偵測下限測試 16
3.3.6 空白分析 16
3.3.7唾液樣本儲存穩定性分析測試 17
3.4 資料分析 17
第四章 結果與討論 18
4.1 實驗室分析方法與結果 18
4.1.1 分析條件測試 18
4.1.2 檢量線結果 18
4.1.3 脫附效率結果 19
4.1.4 回收率結果 20
4.1.5 精確度結果 21
4.1.6 方法偵測下限測試結果 21
4.2 膠合作業及工作場所介紹 22
4.3 勞工人口學資料 24
4.4 暴露採樣測定結果 24
4.4.1 暴露組與非暴露組唾液與尿液測定結果 24
4.4.2 空氣與唾液樣本暴露測定結果探討 27
4.4.3尿液與唾液樣本暴露測定結果探討 30
4.4.4 暴露勞工唾液樣本暴露測定結果探討 38
4.4.5 暴露勞工尿液樣本暴露測定結果 39
4.4.6 空氣、唾液和尿液樣本暴露測定結果比較 40
4.5 暴露勞工唾液樣本冰存前後測定結果 41
4.6 唾液半衰期估計 43
第五章 結論與建議 45
5.1 結論 45
5.2 建議 46
參考文獻 48
附錄一 採樣紀錄表 54
附錄二 人體試驗審查通過證明函 58
附錄三 10 個非連續工作天4名暴露者唾液樣本甲醇趨勢圖 59
附錄四 空氣、唾液樣本測定值與平均值及標準差 63
American Conference of Governmental Industrial Hygienists, Threshold Limit Values (TLVs??) for Chemical Substances and Physical Agents & Biological Exposure Indices (BEIs??), ACGIH, Cincinnati, Ohio, 2007.
Batterman S., Xiao H. and Franzblau A. (1996a) Blood and Urine Bioindicators for Methanol Exposure:Effect of Chilled and Frozen Sample Storage, Appl Occup Environ Hyg . 11(1):25-29.
Batterman S., Franzblau A. and Zhou N. (1996b) Airborne emission at skine surfaces: a potential biological exposure index, Int Arch Occup Environ Health. 68:268-274
Batterman S., Franzblau A., D’Arcy J. et al. (1998) Breath, urine, and blood measurements as biological exposure indices of short-term inhalation exposure to methanol, Int Arch Occup Environ Health. 71:325-335.
Barbosa F., Rodrigues M.H.C., Buzalaf M.R., Krug F.J., Gerlach R.F. and Tanus-Santos J.E. (2006) Evaluation of the use of salivary lead levels as a surrogate of blood lead or plasma lead levels in lead exposed subjects, Arch Toxicol. 80:633-637.
Binnie V., McHugh S., Macpherson L., Borland B., Moir K. and Malik K. (2004) The validation of self-reported smoking status by analysing cotinine levels in stimulated and unstimulated saliva, serum and urine, Oral Dis. 10(5):287-93.
Denovan L.A., Lu C., Hines C.J. and Fenske R.A. (2000) Saliva biomonitoring of atrazine exposure among herbicide applicators, Int. Arch. Occup. Environ. Health 73:457-462.
Davoli E., Cappeline L.A., Fanelli R. (1986) Serum methanol concentrations in rats and in men after a single dose of aspartame, Food Chem Toxicol 24:187-189.
Droz P.O., Fiserova-Bergerova V. (1992) Biological monitoring. VI. Pharmacokinetic models used in setting biological exposure indices, Appl Occup Environ Hyg 7:574-580.
Ernstgard L., Sjogren B., Warholm M. and Johanson G. (2003a) Sex differences in the toxicokinetics of inhaled solvent vaporsin humans 1. m-Xylene, Toxicology and Applied Pharmacology 193:147-157.
Ernstgard L., Sjogren B., Warholm M. and Johanson G.. (2003b) Sex differences in the toxicokinetics of inhaled solvent vaporsin humans 2. 2-Propanol, Toxicology and Applied Pharmacology 193:158-167.
Ernstgard L., Shibata E. and Johanson G.. (2005) Uptake and deposition of inhaled methanol vapor in human, Toxicological Sciences.88(1):30-38.
Franzblau A., Batterman S., D’Arcy J. et al. (1995) Breath Monitoring of Inhalation and Dermal Methanol Exposure, Appl Occup Environ Hyg . 1010(10)833-839.
Franzblau A., Batterman S., Zhou N. et al. (1997) Evaluation of Methanol and Formate in Urine as Biological Exposure Indices of Methanol Exposure, Appl Occup Environ Hyg . 12(5):367-374.
Hantson P., Mahieu P. (2000) Pancreatic injury following acute methanol poisoning, J Toxicol Clin Toxicol 38:297-303
Jenkins R.A. and Counts R.W. (1999) Personal exposure to environmental tobacco smoke: salivary cotinine, airborne nicotine, and nonsmoker misclassification, J Expo Anal Environ Epidemiol. 9(4):352-363.
Kaufman E. and Lamster I.B. (2002) The diagnostic applications of saliva---a review, Crit Rev Oral Biol Med 13(2):197-212.
Kavet R. nd Nauss, K.M. (1990) The toxicity of inhaled methanol vapors, Crit. Rev. Toxicol. 21:21-50.
Kawai T., Yasugi T., Mizunuma K., Horiguchi S., Hirase Y., Uchida Y. and Ikeda M. (1991) Methanol in urine as a biological indicator of occupational exposure to methanol vapor, Int Arch Occup Environ Health. 63(5):311-318.
Lindinger W., and Taucher J., Jordan A., Hansel A., and Vogel W. (1997) Endogenous production of methanol after the consumption of fruit, Alcohol Clin. Exp. Res. 21:939-943
Minoia C., Sabbioni E., Apostoli P. et al. (1990) Trace element reference values in tissues, from inhabitants of the European Community. I a study of 46 elements in urine, blood and serum of Italian subjects, Sci Total Environ 95:89-105.
Maskarinec M.P., Jenkins R.A., Counts R.W. and Dindal A.B. (2000) Determination of exposure to environmental tobacco smoke in restaurant and tavern workers in one US city, J Expo Anal Environ Epidemiol. 10(1):36-49.
Michishige F., Kanno K., Yoshinaga S., Hinode D., Takehisa Y. and Yasuoka S. (2006) Effect of saliva collection method on the concentration of protein components in saliva, The Journal of Medical Investigation 53:140-6.
Medinsky M., Dorman D. (1995) Recent development in methanol toxicity, Toxicology Letter. 82(83):707-711.
Nriagu J., Burt B., Linder A., Ismail A. and Sohn W. (2006) Lead levels in blood and saliva in a low-income population of Detroit, Michigan, Int J Hyg Environ Health 209(2):109-121.
Price D.A., Astin M.P., Chard C.R. and Addison G.M. (1979) Assay of hydroxyl progesterone in saliva, Lancet 1:363.
Rassarelli M., Paolielo M., Matsuo T. et al. (1999) Methanol reference values in urine from inhabitants of Brazil, Science of Total Environment. 243(244):349-352.
Reese E., and Kimbrough R.D. (1993) Acute toxicity of gasoline and some additives, Environ. Health Perspect 101:115-131
Shirtcliff E.A., Granger D.A., Schwartz E. and Curran M.J. (2001) Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results, Psychoneuroendocrinology 26:165-173.
Skrizydlewska E., Witek A., Farbiszewski R. (1998a) The comparison of the antioxidant defense potential of brain to liver of rats after methanol ingestion, Comparative Biochemistry and Physiology Part C 120:289-294.
Skrizydlewska E. (2003b) Toxicological and metabolic consequences of methanol poisoning, Toxicol Mech Methods 13:277-93.
Timchalk C., Poet T.S., Lin Y., Weitz K.K., Zhao R. and Thrall K.D. (2001) Development of an integrated microanalytical system for analysis of lead in saliva and linkage to a physiologically based pharmacokinetic model describing lead saliva secretion, Am. Ind. Hyg. Assoc. J. 62:295-302.
Timchalk C., Lin Y., Weitz K.K., Wu R.A., Gies R.A., Moore D.A. and Yantasee W. (2006) Disposition of lead (Pb) in saliva and blood of Sprague-Dawley rats following a single or repeated oral exposure to Pb-acetate, Toxicology 222:86-94.
Timchalk C., Campbell J.A., Liu G., Lin Y. and Kousba A.A. (2007) Development of a non-invasive biomonitoring approach to determine exposure to the organophosphorus insecticide chlorpyrifos in rat saliva, Toxicology and Appied Pharmacology 219:217-225.
Vining R.F., Mcginley R.A. (1985) Hormones in saliva, Critical Reviews in Clinical Laboratory Sciences 138:365-371.
Willers S., Axmon A., Feyerabend C., Nielsen J., Skarping G. and Skerfving S. (2000) Assessment of environmental tobacco smoke exposure in children with asthmatic symptoms by questionnaire and cotinine concentrations in plasma, saliva, and urine, J Clin Epidemiol. 53(7):715-721.
Wolff A., Begleiter A. and Moskona D. (1997) A novel system of human submandibular/sublingual saliva collection, J. Dent Res 76(11):1782-1786.
Wong D.T. (2006) Towards a simple, saliva-based test for the detection of oral cancer, Expert Rev. Mol. Diagn. 6(3):267-272.
Yantasee W., Lin Y., Hongsirikarn K., Fryxell G.E., Addleman R. and Timchalk C. (2007) Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors, Environmental Health Perspectives 115(12):1685-1690.
林育群 (2003) 建立唾液中二甲基甲醯胺職業暴露之生物指標分析方法, 成功大學 環境醫學研究所碩士論文。
鄭皓元 (2008) 以唾液樣本進行合成皮作業勞工二甲基甲醯胺短時暴露測定, 長榮大學 職業安全與衛生研究所碩士論文。
張豊杰 (2008) 暴露變異對生物偵測指標測定結果的影響探討, 長榮大學 職業安全與衛生研究所碩士論文。
行政院勞工委員會(2003)有機溶劑中毒預防規則,行政院勞工委員會。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔