(3.235.245.219) 您好!臺灣時間:2021/05/07 22:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:呂忠翰
研究生(外文):Jhong-Han Lyu
論文名稱:模擬有機物質厭氧消化之固體物減量及能源回收之研究
論文名稱(外文):A Study on Solid Reduction and Energy Recovery of Simulate Anaerobic Digestion Process
指導教授:林信一林信一引用關係
指導教授(外文):Hsin-Yi Lin
學位類別:碩士
校院名稱:長榮大學
系所名稱:職業安全與衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:66
中文關鍵詞:水力停留時間有機負荷動力學超音波水解固體物減量
外文關鍵詞:Hydraulic retention timeorganic load ratekineticsultrasoundsoild reduciton
相關次數:
  • 被引用被引用:5
  • 點閱點閱:280
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用葡萄糖和動物飼料為基質,進行厭氧醱酵及消化反應,探討產氣效率及固體物減量效果。實驗過程分為三個部分,第一部分以葡萄糖和動物飼料為基質之厭氧醱酵試驗,分別控制不同水力停留時間和有機負荷,探討其產氫效果和動力學模式(Monod equation);第二部分以動物飼料為基質進行單相式和二相式厭氧消化反應,控制不同基質前處理(加熱水解和超音波水解)和水力停留時間,模擬在不同條件之下,其產氣和固體物減量提昇的效果;最後以得到較佳的控制條件進行高溫厭氧反應試驗,探討其產氣和固體物去除效果是否能更進一步的提昇。
由實驗結果得知以葡萄糖為單一基質進行厭氧反應時,水力停留時間控制為12小時,其產氫效率和VSS濃度最高約為26.2 ml-H2/g-COD和615mg/L;以動物飼料為基質進行厭氧反應時,有機負荷控制為10.0 kg-TS/m3•day,其產氫率為最高約為16.3ml-H2/g-COD;以動力學模式推導得知,以葡萄糖為基質進行反應,水力停留時間為12小時,其半反應速率常數(Ks)為7,184mg/L,以動物飼料為基質進行反應,其Ks為18,330mg/L。
第二部分的實驗指出基質進行超音波水解前處理之二相式厭氧消化反應其甲烷產量提昇約30%,TVS去除率提昇約15%,COD去除率提昇約10%,產甲烷效率為20ml-CH4/g-COD為最佳;當水力停留時間控制為16天時,二相式厭氧消化反應甲烷化槽因HRT縮短,而反應槽內發生揮發酸累積現象,揮發酸濃度從1,538mg/L累積至4,878mg/L,使得甲烷化槽無法有效進行反應,而產氣量和固體物去除效果有明顯的降低,下降約27%。
以組合基質進行超音波水解前處理,基質濃度控制20,000mg/L,進行高溫厭氧反應,其產氫量和固體物去除皆有提昇效果,其產氫量提昇約40%,TVS去除率提昇約23%,COD去除率提昇約20%。
This study is aimed to investigate the digestion rate and biogas production rate of glucose and animal feed in anaerobic fermentation and digestion.The hydrogen production yield and kinetics (Monod equation) of substrates used glucose and animal feed in anaerobic fermentation experiments by different hydraulic retention time and organic load rate was investigated in the first part.In the second part,the biogas production yield and solid reduction of animal feed in signal-phase and two-phase anaerobic digestion experiments by different pretreatment(pre-heat and ultrasound) and hydraulic retention time was investigated.Finally,the biogas production yield and solid reduction in thermophilic anaerobic reaction was studied according to experiment results.
The results of the first part indicated that glucose was used as substrate in anaerobic reaction,the hydrogen production yield of 26.2 ml-H2/g-COD and volatile suspended solid of 615mg/L was the best result when hydraulic retention time were controlled at 12 hours. The half-maximal reaction velocity constant(Ks) is 7,184mg/L.Substrate used animal feed in anaerobic reaction had the highest hydrogen production yield of 16.3ml-H2/g-COD when organic load rate wer controlled at 10.0 kg-TS/m3•day. The half-maximal reaction velocity constant (Ks) is 18,330mg/L.
The second part indicated that substarte through ultrasound in single-phase and two-phase anaerobic digestion had increaded about 30% methane yield、15% TVS removal rate and 10% COD removal rate and the methane production yield was 20 ml-CH4/g-COD.When HRT was controlled at 16 days, VFA was accumulated from 1,538mg/L to 4,878mg/L in the two-phase anaerobic methanogenic reactor.The biogas production yield and soild reductive had decreased about 27 %.
The biogas yield and soild reductive was increased when substrate concentration were controlled 20,000 mg/L in thermophilic anaerobic reaction.The biogas yield、TVS and COD removal rate had increased about 40%、23% and 20%.
摘要 II
目錄 IV
圖目錄 VI
表目錄 VII

第一章 前言 1
1.1研究背景 1
1.2研究目的 2
第二章 文獻回顧 3
2.1 厭氧消化的原理 3
2.2 厭氧消化微生物 5
2.3 厭氧消化反應之影響因子 7
2.3.1 基質 7
2.3.2 營養源 8
2.3.3 水力停留時間 9
2.3.4 溫度 9
2.3.5 pH值 10
2.3.6 氧化還原電位 11
2.4 固體物減量 11
2.5 二相式厭氧消化 14
2.6 厭氧醱酵產氫動力學模式 15

第三章 實驗設計與方法 19
3.1實驗設計流程 20
3.2實驗材料 21
3.2.1 基質組成 21
3.2.2 植種與植種前處理 22
3.3 實驗步驟 22
3.3.1 以葡萄糖為基質之厭氧發酵產氫試驗 22
3.3.2 不同有機負荷之組合基質厭氧產氫試驗 23
3.3.3 不同組合基質前處理之單相式和二相式厭氧反應試驗 24
3.3.4 高溫厭氧試驗 25
3.4 實驗設備與分析方法 27
3.4.1 實驗器材與藥品 27
3.4.2實驗設備 28
3.4.3實驗分析項目 29
3.4.4一般水質分析 29
3.4.5 氣體和揮發酸分析 30
3.4.6樣品保存 31

第四章 結果與討論 32
4.1 基本特性分析 32
4.1.1葡萄糖溶液基本特性 32
4.1.2 組合基質特性分析 32
4.2葡萄糖之厭氧醱酵試驗探討 33
4.2.1 不同水力停留時間對於菌種生長之探討 33
4.2.2不同水力停留時間對於產氫氣效率之探討 35
4.2.3 不同HRT之動力學探討與模擬 37
4.3不同有機負荷之組合基質厭氧消化試驗探討 40
4.3.1 不同有機負荷對於產氣效果的影響 40
4.3.2 不同有機負荷之動力學模式探討 43
4.4單相式和二相式之組合基質厭氧消化試驗探討 45
4.4.1 基質進行超音波和加熱前處理之厭氧消化批次試驗 45
4.4.2 基質進行加熱前處理之單相式和二相式厭氧消化試驗探討 47
4.5高溫厭氧反應試驗 57

第五章 結論與建議 60
5.1結論 60
5.2 建議 61

參考文獻 62
Cha, G.C., and T. Noike, (1997) “Effect of rapid temperature change and HRT on anaerobic acidogenesis”, Water Science and Technology, Vol. 36(6-7), pp. 247-253.
Converse, J. C., Day, D. L., Pfeffer, J. T. & Jones, B. A. (1971)Aeration with ORP Control to Suppress Odors Emitted from LiquidSwine Manure Systems. Proc. Int. Symp. on Livestock Waste ,American Soc. of Agric. Engr., St. Joseph, MI, 267 -271.
Carrondo, M. J. T.(1982) Anaerobic Filter Treatment of Molasses Fermentation Wastewater. IAWPR- Specialised Seminar on Anaerobic Treatment.
Dabrock, B., Bahl, H., Gottschalk, G., 1992. Parameters affecting solvent production by Clostridium pasteuriamum. Appl. Environ. Microbiol.58(4), 1223-1239 Evaporator Condensate with an Anaerobic Reactor. TAPPI Environmental Conference, 1-10.
Ghosh, S., J. P. Ombregt,(1985) Methane Production from Industrial Wastes by Two-Phase Anaerobic Digestion, Wat. Res., 19(9):1083-1088.
Goel, B., D. C. Pant, V. V. N. Kishore(2001) Two-Phase Anaerobic Digestion of Spent Tea Leaves for Biogas and Manure Generation,Bioresource Technology, 80(2):153-156.
Gottschalk G., (1986). Bacteria Metabolism. Spring-Verlag New York.pp208-282.
Hanndel, V.C.A.; Lettinga, G., (1994). Anaerobic sewage treatment- a practical guide for regions with a hot climate. Willey publisher, England.
Hallenbeck, P. C.(1983) Immobilized Microorganisms for Hydrogen and Ammonia Production. Enzyme. Microbiology Technology , 5, 171-179.
Hart E. J., C. H. Fischer and A. Henglein. Sotopic Exchange in the Sonolysis of Aqueous Solutions Containing 14, 14N2 and 15, 15N2, Journal of Physical Chemistry, 90, 5989-5991, 1986.
Hawkes F.R., Dinsdale R., Hawkes D.L.,and Hussy I.(2002) “Sustainable Fermentative Hydrogen Production: Challenges for Process Optimisation,”International Journalof Hydrogen Energy,27,pp.1339-1347.
Henze,M. & Harremöse,P. (1983) Anaerobic Treatment of Wastewater in Fixed Film Reactors - A Literature Review. Water Sci. Technol,15 ,1-101.Benjamin, M. M., Ferguson, J. F., & Buggins, M. E. (1989) Treatment of Sulfite
Hindin, E. & Dunstan, G. H. (1970) Effects of Detention Time on Anaerobic Digestion . Journal Water Pollution Control Fede - ration , 32, 930.
Hiraoka, M., N. Takeda, S. Sakai, and A. Yasuda(1984)Highly Efficient Anaerobic Digestion with Thermal Pretreatment, Wat. Sci. Tech.,17:529-539.
Hippe, H., Andreesen, J. R. & Gottschalk, G. ( 1992 ) The GenusClostridium -Nonmedical.1800-1825, In :Balows, H., Trüper, H.G.,Dworkin, M. , Hareder, W., and Schleifer, K.H.(2nd ed.), The Prokaryotes, 3, Springer -Verlag, New York.
Kumar, A., Jain, S. R., Sharma, C. B., Joshi, A. P. & Kalia, V. C.(1995)Increased H2 Production by Immobilized Microor- ganisms.World Journal of Microbiology & Biotechnology , 11, 156-159.
Kataoka, N., A. Miya, and K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Wat. Sci.Tech. 36:41-47.
Khanal S.K., Chen W.H., Li L. and Sung S., (2004) “Biological hydrogen production: effects of pH and intermediate products”, Int.J.Hydrogen Energy,29:1123-1131.
Li, A. Y. (1984)Anaerobic Process for Industrial Wastewater Tratement. Department of Environmental Engineering, National Chung-Hsing University.
Majizat, A., Yoshida, Y., Mitsunori, W., Michimasa, N., & Jun’ichiro, M. (1997)Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems. Proc.8th International Conf. on Anaerobic Digestion, 1, 261-267.
Malina, J. F., Pohland, F. G., 1992 ,Water Quality Management Library Volume 7, pp.1-67, pp.167-211, Design of Anaerobic Process for the Treatment of Industrial and Municipal Wastes, Technomic Publishing Company, Inc., Western Hemisphere, USA.
McGarty, P. L. (1964a) Anaerobic Waste Treatment Fundamentals- PartOne Chemistry and Microbiology. Public Works, 95 , 107-112.


Minton, N. P. and Clarke, D. J., 1989, Clostridia, A Division of Plenum Publishing Corporation, New York.
Misik, V., N. Miyoshi., and P. Riesz, pin-Trapping, Study of the Sonolysis of H2O/D2O Mixtures- Proing the Temperatuer of Cavitation Regious, Journal of Physical Chemistry, 99, 3605-3611, 1995.
Nandi R. and Sengupta S., (1998)”Microbial production of hydrogen:an overview”, Critical Reviews Microbio., 24:61-84.
Onoder, H., Miyahara, T. and Nokie, T.(1997)Influence of Ammonia Concentration on Hydrogen Transformation of Sucrose. 7th IAWQ Asia-pacific Regional Conference. 2, 1139-1145.
Parkin G.F. and Owen W.F.,(1986)”Fundamentals of anaerobic digestion of wastewater sludges”, J. Environ. Eng. ASCE, 112:876-920.
Rajeshwari K.V.,Balakrishana M., Kanssl A., Lata K., and Kishore V.V.N.,(2000)”State-of-the-art of anaerobic digestion technology for industrial wastewater treatment”, Renewable and Sustainable Energy Reviews,4:135-155。
Speece, R. E. ,McGarty,P.L. (1964) Nutrient Requirements and Biological Solids Accumulation in Anaerobic Digestion. Advances in Water Pollution Research,2 , 305-322.
Spengel, D. B. & Dzombak, D. A. (1992). Biokinetic modeling and scale-up considerations for readapting biology. Water Environment Research, 64(3), 223-235.
Taguchi, F., Chang, J. D., Takiguchi, S. & Morimoto, M. (1992), Efficient Hydrogen Production From Starch by a Bacterium Isolated from Termites. Journal of Fermentation and Bioengineer, 73(3), 244-245.
Van den Berg, L. & Lentz, C. P. (1977) Food Processing Waste Treatment by Anaerobic Digestion. In Proceedings of the 32nd Industrial Waste Conference,252-258.
Van den Berg, L. & Lentz, C. P. (1980) Performance and Stability of the Anaerobic Contactor Process as Affected by Waste Composition, Inoculation and SolidsRetention Time. In Proceedings of the 35th Industrial Waste Conference.
Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S. & Takasaki, Y.(1995)Cha- racteristics of Hydrogen P roduction by Aciduric Enterobacter aerogenes Strain HO-39. Journal of Fermentation and Bioengineer, 8(6), 571-574.
Zigová, J., Sturdik, E., Vandak, D., Schlosser, S., 1999. Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Proc. Biochem. 34, 835–843.
Zehnder, A. J. B. , Ingvorsen, K. & Marti, T. (1981) Microbiology of Methane Bacteria. Prensented at the second International Symposium on Anaerobic Digestion , Travem ünde,Germany, 6-11.
Zwietering, M. H., Jongenbuger, I., Rombouts, F. M. & Riet, K. (1990 ). Modeling of bacteria growth curve. Applied and Environmental Microbiology, 56(6), 1875-1881.
陳文欽、鄭幸雄、白明德、張仕旻、吳坤龍、陳文卿,2000,厭氧生物氫氣醱酵技術應用於污泥處理之可行性研究。國科會生物產氫研究成果發表會論文集,台南市。
李國鏞、游若荻,1992,微生物學,四版,華香園出版社,台北。
吳建忠,2005,溫度對木糖醱酵產氫之影響,碩士論文。
賴欣宏,2001,不同環境條件下,完全混合式反應槽厭氧產氫效率及反應動力學之比較研究 。臺中師範學院/環境教育研究所碩士論文。
張士旻,2001,利用薄膜反應器於高溫厭氧產氫生物程序之研究,國立成功大學環境工程學系碩士論文。
楊聰宏,2003,不同操作條件下柱塞流式、無攪拌式反應槽之醱酵產氫效率比較及反應動力學之模擬研究,碩士論文。
楊易霖,2002,有機廢棄物之厭氧消化-前處理及溫度之影響 屏東科技大學環境工程與科學系碩士論文。
黃俊霖、陳晉照、林秋裕、劉文佐,2000,以分子生物技術探討厭氧生物產氫程序之菌群結構。國科會生物產氫研究成果發表會論文集,台南市。
林秋裕、陳晉照、林明正,1998,Hydrogen production in anaerobic acidogenesis process-influence of therma isolation and incubaattion environment.第24屆廢水處理技術研討會論文集,桃園,第21∼26 頁。
洪仁陽,劉有清,吳漢松,陳慶華,邵信,游惠宋,鄒文源,鄭幸雄,1997,促進厭氧污泥顆粒化及減少處理場污泥量之整合性厭氧處理程序研究,工業污染防治,第62 期,pp. 133-149。
陳晉照、林秋裕,2001,,Using Hexose as a Substrate in Anaerobic Hydrogen
Production Reactors。國科會生物產氫研究成果發表會論文集,台南市。
林明瑞、盧重興、邱毓明、賴欣宏,1999,四種反應槽厭氧產氫效率之比較研究。中華民國環境工程學會第二十五屆廢水處理技術研討會,345-350
鄭幸雄、陳錫添、林秋裕、曾怡禎、李季眉、林信一、林明瑞、劉文佐,2000,台灣生物產氫研究現況及未來展望。國科會生物產氫研究成果發表會論文集,台南市。
劉佳儒,2000,鐵鹽濃度與pH值對於厭氧產氫菌分解有機固體廢棄物之影響 。國立高雄第一科技大學/環境與安全衛生工程所碩士論文。
楊易霖,2003,有機廢棄物厭氧消化---前處理及溫度之引影響,國立屏東科技大學環境工程與科學研究所碩士論文。
李篤中、朱敬平,污泥處置(II):污泥之前處理,台大工程學刊,第八十二期,民國九十年六月,第49-76頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔