(3.238.173.209) 您好!臺灣時間:2021/05/16 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊承訓
研究生(外文):Cheng-Hsun Yang
論文名稱:人蔘萃取物Rg1抑制缺氧誘發大鼠心肌細胞凋亡之機轉探討
論文名稱(外文):Ginsenoside Rg-1 suppresses the hypoxia-induced apoptosis in neonatal rat cardiomyocytes
指導教授:黃志揚黃志揚引用關係
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:中國醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:75
中文關鍵詞:人蔘人蔘皂甘Rg1初代培養初代心肌細胞H9c2心肌細胞
外文關鍵詞:Ginsenoside Rg-1hypoxiaapoptosisneonatal ratHIF-1BNIP3cardiomyocytes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人蔘皂甘Rg1為人蔘萃取物的一種,在研究中指出,其具有降低低密度脂蛋白(LDL)及保護心血管等功能,但其分子機轉目前尚未清楚。人蔘皂甘Rg1的結構與雌激素相似,生理功能亦相差不遠,同樣具雌激素接受體結合之效能。但有研究指出,過多的雌激素會引發乳癌、卵巢癌及前列腺癌等癌細胞的生長;而人蔘皂甘Rg1則被研究出具有抗癌的功效,故假設人蔘皂甘Rg1可能因在其結構上與雌激素的差異,而在生理上產生不同的影響。本實驗使用人蔘之主要活性成分,人蔘皂甘Rg1及誘發心肌細胞凋亡之缺氧方式去刺激H9c2心肌細胞及初代培養之心肌細胞,探討人蔘皂甘Rg1是否具保護作用及其分子機轉。實驗中發現人蔘皂甘Rg1可促進心肌細胞存活蛋白的活性。
長期間缺氧,會引發許多疾病,其中也包含了心血管疾病;研究指出,缺氧的機制與缺血再獲氧相雷同,會在體內產生氧化壓力的傷害,然其對心臟所造成損傷之機轉目前尚不清楚。實驗採用長期間缺氧的模式,將細胞培養皿置入固定含氧1%的缺養盒中,採取0.5小時、1小時、2小時、3小時、6小時、8小時、12小時及24小時的缺氧時間。實驗結果發現,缺氧會造成大鼠心臟心肌細胞肥大,並活化凋亡蛋白與改變粒線體膜電位誘發下游的訊息傳遞路徑,引發一連串的凋亡現象產生造成心臟心肌細胞凋亡。但在給人蔘皂甘Rg1後,則可以明顯的觀察到,缺氧所造成之心臟心肌細胞損傷均有回復的現象。以上,實驗結果證實,缺氧可能因透過產生氧化壓力而造成心臟心肌細胞的傷害,但在給予人蔘皂甘Rg1後,確實可以防止心肌細胞受到更大的傷害。
BACKGROUND: Ginsenoside Rg1 is a well-known important Chinese traditional medicine used for the treatment of various diseases, especially for cardiac diseases. However, the precise mechanisms of the cardiac protective effects of Rg-1 is not fully understood. Chronic cardiac ischemia/hypoxia induces coronary collateral formation and cardiomyocyte proliferation. Hypoxia can induce cellular adaptive responses. Therefore, cardiac myocyte death during hypoxia–acidosis involves two distinct steps: (1) hypoxia activates transcription of the death-promoting Bcl-2 and nineteen-kilodalton interacting protein-3 (BNIP3) gene through a hypoxia-inducible factor-1 (HIF-1) site in the promoter and (2) acidosis activates BNIP3 by promoting mitochondria membrane translocation. This is an atypical programmed death pathway involving a combination of the features of apoptosis and necrosis.

METHOD: The aim of our study is to investigate the effect of ginsenoside Rg1 on hypoxia-induced apoptosis and the expressions of hypoxia inducible factor 1 (HIF-1), Bcl-2 and nineteen-kilodalton interacting protein-3 (BNIP3) and caspase-3 in cultured neonatal rat cardiomyocytes. The ventricular myocytes were isolated from neonatal rat hearts and were exposed to hypoxia chamber for 0.5, 1, 2, 3, 6, 8, 12 and 24 hours.

RESULTS: The results showed that hypoxia not only induced the expression of hypoxia markers, HIF-1 and BNIP3, but also activated the caspase-3 protein to trigger the cardiomyocyte apoptosis. Interestingly, the results of the hypoxia-challenged cardiomyocyte, fibroblasts, and H9c2 treated with different doses of Rg-1 (2mg/ml, 4mg/ml,6mg /ml, 8mg/ml, 10mg/ml, 12mg/ml) showed that the upregulated HIF-1 and BNIP3 were significantly inhibited, and the activated caspase-3 and apoptotic effect were blocked as well.

CONCLUSIONS: In conclusion, Rg-1 may have the potential to protect hearts from through inhibiting activated HIF-1, BNIP3 and hypoxia-induced apoptosis.
目錄
中文摘要1
英文摘要3
第一章 前言1
第一節 心血管疾病於臺灣概況之回顧1
第二節 一般造成心臟病的原因2
第三節 粥狀動脈形成之介紹 4
第四節 動脈粥狀硬化斑會引起血栓(thrombosi s)的形成7
第五節 心臟心肌細胞的肥大7
第六節 細胞程序性凋亡9
第七節 人蔘皂甘Rg 111
第二章 文獻探討14
第一節 研究假設與思維之啟發14
第二節 訊息傳遞(Signal Transduction)14
第三節 心臟疾病16
第四節 心肌細胞肥大與凋亡18
第五節 心肌細胞纖維化21
第六節 細胞凋亡(Apoptosis)與壞死(Necrosis)21
第七節 低氧誘導因子24
II
第八節HIF-1 之調控機制25
第九節細胞凋亡之訊息途徑28
第十節 雌激素33
第十一節 人蔘皂甘 Rg134
第三章 實驗動機37
第四章 材料與方法39
第一節 實驗藥品39
第二節 實驗儀器41
第三節 實驗方法42
一、心肌細胞H9c2 培養42
二、初代培養心肌細胞培養43
三、缺氧方式44
四、藥劑處理時間點44
五、細胞蛋白質萃取45
六、蛋白質濃度測定45
七、西方墨點(Western blotting)46
八、TUNEL Assay47
九、粒線體膜電位染色(JC-1 staining)48
十、統計方式48
III
第五章 結果50
第六章 討論62
第七章 結論70
參考文獻71
1.Kang PM, Izumo S. Apoptosis and heart failure: a critical review of the literature. Circ Res 2000;86:1107–1113
2.Cheng W, Kajstura J, Nitahara JA et al .Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996;226:316–327
3.Narula J, Pandey P, Arbustini E et al. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 1999;96:8144–8149
4.Gottlieb RA, Burleson KO, Kloner RA et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621–1628
5.Umansky SR, Shapiro JP, Cuenco GM, Foehr MW, Bathurst IC, Tomei LD. Prevention of rat neonatal cardiomyocyte apoptosis induced by simulated in vitro ischemia and reperfusion. Cell Death Differ 1997;4:608–616
6.Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312–1316
7.Cohen GM. Caspases: the executioners of apoptosis. Biochem J 1997;326:1–16
8.Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000;10:369–377
9.Reed JC, Zha H, Aime-Sempe C, Takayama S,Wang HG
Structure–function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med Biol 1996;406:99–112
10.Kirshenbaum LA, de Moissac D. The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circu-lation 1997;96:1580–1585
11.Yamamura T, Otani H, Nakao Y, Hattori R, Osako M, Imamura H IGF-I differentially regulates Bcl-xL and Bax and confers myocardial protection in the rat heart. Am J Physiol Heart Circ Physiol 2001;280:H1191–H1200
12.Zhu ZH, Xiong LZ, Dong HL et al. Dose response effects of Shenfu injection on ischemic reperfusion injury of spinal cord in rabbit. Chin J Anesthesiol 2000;20:664–668
13.Xia ZY, Zhan LY, He YH, Liu XY. The effect of Shenfu on gastrointestinal tract injury and its potential mechanism during cardio-pulmonary bypass in patients undergoing cardiac surgery. Chin J Traumatol 2003;6:245–248
14.Liu XY, Zou HD, Yu JF et al. Protective effect of Shenfu injection on multiple organ damage in rabbit during ischemia reperfusion. Chin J Anesthesiol 1997;17:430–432
15.Zhang BJ, Wang YL Wang CY, Ke JJ. Effect of Shenfu injection on nuclear factor-jB during myocardial ischemia/reperfusion injury in rats. Chin J Traumatol 2005;8:200–204
16.Buja LM, Hagler HK, Parsons D, Chien K, Reynolds RC, Willerson JT. Alterations of ultra structure and elemental composition in cultured neonatal rat cardiac myocytes after metabolic inhibition with iodoacetic acid. Lab Invest 1988;53:397–412
17.Bo HS, Seung HC, Eun YC et al. Thiamine attenuates hypoxia-induced cell death in cultured neonatal rat cardiomyocytes. Mol Cells 2004;18:133–140
18.Carden DL, Granger DN. Pathophysiology of ischemia-reperfusion injury. J Pathol 2000;190:255–266
19.Anderson HV, Willerson JT. Current concepts: thromboly- sis in acute myocardial infarction. N Engl J Med 1993;329:703–709
20.Vermeiren GLJ, Claeys MJ, Van Bockstaele D et al. Reperfusion injury after focal myocardial ischemia: polymor-phonuclear leukocyte activation and its clinical implications. Resuscitation 2000;45:35–61
21.Long X, Boluyt MO, Hipolito ML et al. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 1997;99:2635–2643
22.Wang G-W, Zhanxiang Z, Klein JB, Kang YJ. Inhibition of hypoxia/reoxygenation-induced apoptosis in metallothionein- overexpressing cardiomyocytes. AJP—Heart 2001;280:2292–2299
23.Cook SA, Sugden PH, Clerk A. Regulation of bcl-2 family proteins during development and in response to oxidative stress in
cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res 1999;85:940–949
24.Cao J, Zhang CD, Zhang GX, Zhang YJ, Min S. Protective effect of Shenfu injection on myocardial mitochondria injured by ischemia-reperfusion in rabbits. Chin Med J 2005;118:505–507
25.Xia ZY, Meng QT, Zhang F, Chen XD. Effect of Shenfu injection (ginesenoside and aconite alkaloid) on the apoptosis of intestinal mucosal epithelial cells and its mechanism during ischemia reperfusion in rats. Chin J Traumatol 2004;7:363–367
26.Shizukuda Y, Buttrick PM, Geenen DL, Borczuk AC, Kitsis RN, Sonnenblick EHbeta-adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. Am J Physiol. 1998;275(3 Pt 2):H961-H968.
27.Saito S, Hiroi Y, Zou Y, Aikawa R, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I. beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem. 2000 Nov 3;275(44):34528-34533.
28.Osborne CK, Zhao H, Fuqua SA. Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol. 2000; 18(17):3172-3186.
29.Kim JK, Pedram A, Razandi M, Levin ER. Estrogen Prevents Cardiomyocyte Apoptosis through Inhibition of Reactive Oxygen Species and Differential Regulation of p38 Kinase Isoforms. J Biol Chem. 2006; 281(10):6760-6767.
30.Green S, Walter P, Kumar V, Krust A, Bornert J-M, Argos P, Chambon P. Human oestrogen receptor cDNA sequence expression and homology to-v-erb-A. Nature. 1986;320(6058):134-139.
31.Farombi, E. O.,Britton, G.,and Emerole, G. O. Evaluation of the antioxidant activity and partial characterization of extracts from browned yam flour diet. Food Rec. Inter. 2000;33:493-499.
32.Green S, Walter P, Kumar V, Krust A, Bornert J-M, Argos P and Chambon. Human oestrogen receptor cDNA sequence expression and homology to-v-erb-A. Nature. 1986;320:134-139.
33.Gustafsson JA. Estrogen receptor beta—a new dimension in estrogen mechanism of action. J Endocrinol. 1999 ;163:379-83.
34.Luscher TF. The endothelium and cardiovascular disease—a complex relation. N Engl J Med. 1994;330:1081-3.
35.Libby, P. Inflammation in atherosclerosis. Nature. 2002;420(6917):p.868-874.
36.Marian, A.J., Roberts, R. Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation. 1995;92:1336–1347.
37.Boheler, K.R., Schwartz, K. Gene expression in cardiac hypertrophy. Trends Cardiovasc Med. 1992;5:176–182.
38.Sugden, P.H., and Clerk, A. Cellular mechanisms of cardiac hypertrophy. J. Mol. Med. 1998;76:725–746.
39.Colucci, W.S., and Braunwald, E. in Heart Disease (Braunwald, E., ed), 5th Ed., W. B. Saunders Co., Philadelphia, PA. 1997;p:399-401.
40.Anversa, P., Ricci, R., Olivetti, G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J. Am. Coll. Cardiol. 1986;7:1140–1149.
41.Ravingerova T,B.M., and Strniskova M. Mitogen-activated protein kinases :a new therapeutic target in cardiac pathology. Mol.Cell Biochem. 2003;247(1-2):127-138.
42.Sugden, P.H., Clerk, A. Cellular mechanisms of cardiac hypertrophy. Mol. Med. 1998;76:725–746.
43.Force, T., Pombo, C.M,, Avruch, J.A., Bonventre, J.V., Kyriakis, J.M. Stress-activated protein kinases in cardiovascular disease. Circ. Res. 1996;78:947–953.
44.Abe, J., Baines, C.P. and Berk, B.C. Role of mitogen-activated protein kinases in ischemia and reperfusion injury: the good and the bad. Ceic. Res. 2000;86:607-609.
45.Ruwhof,C. and van, der, Laarse, A. Mechanical stress-induced cardiac hypertrophy: mechanism and signal transduction pathways. Cardiovase. Res. 2000;47:23-37.
46.Yamamoto, S., Sawada, K., Shimomura, H., Kawamura, K., James, T.N. On the nature of cell death during remodeling of hypertrophied human myocardium. J. Mol. Cell. Cardiol. 2000;32:161–175.
47.Narula, J., Haider, N., Virmani, R., DiSalvo, T.G., Kolodgie, F.D., Hajjar, R.J., Schmidt, U., Semigran, M.J., Dec, G.W., Khaw, B.A. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 1996;335:1182–1189.
48.Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J.A., Quaini, E., Di, Loreto, C., Beltrami, C.A., Krajewski, S., Reed, J.C., Anversa, P. Apoptosis in the failing human heart. N. Engl. J . Me. 1997;336:1131–1141.
49.Chi, N. C., and Karliner, J. S. Molecular determinants of responses to myocardial ischemia/reperfusion injury: focus on hypoxia-inducible and heat shock factors. Cardiovasc. Res. 2004;61:437-447.
50.Lefer, D. J., and Granger, D. N. Oxidative stress and cardiac disease. Am. J. Med. 2000;109:315-323.
51.Masson, N., et al. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 2001;20:5197–5206.
52.Semenza, G. Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. 2002;64:993–998.
53.Giordano, F. J., et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc. Natl. Acad. Sci. U. S. A. 2001;98:5780-5785.
54.Yu, J. Y.L., Cheng, C.K. Chen, B.J., Chang, W.J., Chen, H. H.C., Hong, C.C., Lee, P. J., Liang, S. C., Sheu, K. S., Sung, Y. Y., Tang, S. H., Tasai, C. W., Wang, C. S., Wang, M. H., Yen, L.S., and Yu, C. K. A guideline for the care and use of laboratory animals (in Chinese). Published by the Laboratory Animal Science, Taipei, Taiwan, ROC. 2001;171 pp.
55.Neuromuscular disease center Washington University, St. Louis, MO USA
56.Kaohsiung Veterans General Hospital
57.High sierra biotech co., Ltd.
58.Jin-Ming Hwang , Yi-Jiun Weng , CY Huang Hypoxia-induced compensatory effect as related to Shh and HIF-1a in ischemia embryo rat heart. Mol Cell Biochem 2008;311:179–187
59.Lau WS, Chan RY, Guo DA, Wong MS. Ginsenoside Rg1 exerts estrogen-like activities via ligand-independent activation of ERalpha pathway. J Steroid Biochem Mol Biol. 2008 Jan;108(1-2):64-71.
60.Trevillyan JM, Lu YL, Alturu D, Phillips CA, Bjomdahl JM. Differential inhibition of T cell receptor signal transduction and early activation events by a selective inhibitor of protein tyrosine kinase. J Immunol. 1990;145(10):3223-3330.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊